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Abstract

The study of the joint dynamic behaviour between stock market returns and
real economic growth rates is an important empirical question in finance and
macroeconomics. This paper investigates their linkage by proposing a vector
autoregressive infinite hidden Markov model. Our model has two advantages
over the existing approaches in the literatures. In contrast to Markov switching
models with fixed states, our model will learn the number of states from the data
rather than fixing it a priori. The vector autoregressive setting in our model allows
the joint time series of stock market returns and real growth rates to share the
same unobserved state variable. Compared to existing models, our model shows
significant improvements in out-of-sample density forecast accuracy. This paper
demonstrates the predictive power of stock market returns for future growth rates
are better captured by the unobserved states variables, rather than the lagged
stock market returns.
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1 Introduction

Studying the connection between stock market and real economic growth is an impor-
tant empirical question1. In this paper, I study their relationship by using a flexible
Bayesian nonparametric approach with several contributions. Firstly, I propose a vec-
tor autoregressive infinite hidden Markov model (IHMM-VAR). The new model allows
us to investigate the nonlinear and contemporaneous relationship through a common
unobserved state variable. Secondly, mixed evidence of predictive power of lagged stock
market returns for future real growth rates is documented in contrast to the existing
literature. Thirdly, I illustrates that the vector autoregressive dynamics coupled with
Markov switching are essential for capturing the predictive power of stock market re-
turns for real growth rates.

Fama (1990) and Schwert (1990) found lagged stock market returns have significant
correlation with future real growth rates by using linear regression. Choi et al. (1999)
build upon their work by using cointegration tests and error-correction models, in which
only weak evidence for predictive power of lagged stock market returns on future growth
rates is found. Lee (1992) and Hassapis & Kalyvitis (2002) find significant correlations
between lagged stock market returns and future real growth rates by applying a vector
autoregression (VAR). Kanas & Ioannidis (2010) continue their work by applying the
nonlinear model. It suggests a model of Markov switching with two states and finds a
nonlinear correlation between lagged stock market returns and future real growth rates.
Kim & In (2003) find the predictive power of lagged stock market returns on future
real growth rates is likely to be time-varying by using spectral and wavelet analysis.
Hamilton & Lin (1996) suggest the hidden state variables are the main driving force
for directing the dynamics of stock market returns and real growth rates.

What is clear from this literature is that the Markov switching and the vector autore-
gressive structure are necessary to capture changes in joint dynamics of stock market
returns and real growth rates. The existing methods of dealing with this, such as simple
Markov switching or vector autoregression, are insufficient. In addition, the existing
papers examining model performance only focus on point forecasts and ignore density
forecasts. This paper contributes to the literature by introducing a vector autore-
gressive infinite hidden Markov model (IHMM-VAR). In contrast to Markov switching
models with fixed states, the IHMM-VAR allows the unbounded transition matrix to
infer the number of states through the data rather than fixing as prior. Therefore, the
IHMM-VAR can allow to introduce new states to capture any structural change and
incorporate it into forecasts.

By applying our new model on joint time series of U.S monthly S&P 500 excess stock
market returns and industrial production growth rates, a large gain in out-of-sample
density forecast accuracy is delivered compared to benchmark models. An average of 20
states are used to model the joint time series in our model. Our model shows evidence

1Fama (1990), Schwert (1990), Choi et al. (1999) and Kanas & Ioannidis (2010) suggest real stock
returns lead changes in real activity due to dividend discount valuation or consumption capital asset
pricing model.
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of capturing structural breaks as well as recurring states in their dynamic relationship.
Our model shows evidence of the dynamic change in conditional mean and variance of
stock market returns and real growth rates.

The prior for the transition matrix of the infinite hidden Markov model is con-
structed by two Dirichlet processes, which is a special case of hierarchical Dirichlet
process of Teh et al. (2006). A common draw of the top Dirichlet process determines
the prior for each row of the transition matrix. Then, each row of the transition matrix
is a draw from the secondary Dirichlet process and it is centered around a common
draw from the top level.

According to log-predictive Bayes factors, our model does not show any supporting
evidence such that the lagged stock market returns should have predictive power for
future real growth rates. Weak evidence of this lag-relation2 is found in benchmark
models. The empirical result in this paper suggests the unobserved Markov states
shared by the joint time series are the main driving force to capture the predictive
power of stock market returns for real growth rates, rather than the lag-relation.

This paper is organized as follows. Section 2 introduces benchmark models. Section
3 discusses infinite hidden Markov models and its links to Dirichlet process. Section 4
shows the posterior sampling steps. Section 5 describes how to compute out-of-sample
density forecast accuracy from various models. Section 6 discusses empirical results,
and Section 7 concludes the paper.

2 Benchmark Models

The benchmark models are the ones used in the exiting literatures for studying the
joint behavior of stock market returns and real growth rates. One category is the
univariate setting, which means to use autoregression (AR) to separately model stock
market returns and real growth rates. Another category is the multivariate setting,
which explicitly uses vector autoregression (VAR) to jointly model the stock market
returns and real growth rates. In order to test the predictive power of lagged stock
market returns on real growth rates and lag real growth rates on stock market returns,
the unrestricted and restricted versions of each model are introduced. The difference in
forecast performance between two versions reveals whether or not additional explana-
tory variables can contribute to the forecast accuracy. Hamilton & Lin (1996) suggests
only one lag is necessary. This paper follows their approach3. Let rt and gt represents
the corresponding stock market return and real growth rate at time t. The details of
each benchmark model are outlined in the following sections.

2The lag-relation implies the lagged stock market returns should have predictive power for future
real growth rates.

3A preliminary result shows the log-predictive Bayes factor based on two lags do not contribute the
forecast performance under the IHMM-VAR.
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2.1 Univariate Approach

The autoregression (AR) implicitly assumes there is only a single state to govern the
whole time series. Fama (1990) and Schwert (1990) use a similar specification. This
paper revisits this specification under the Bayesian approach. We consider the following
AR model augmented with lagged real growth rate:

rt = µ+ β1rt−1 + β2gt−1 + et et
iid∼ N(0, σ2), (1)

For modeling the real growth rates, we use the following,

gt = µ+ β1gt−1 + β2rt−1 + et et
iid∼ N(0, σ2), (2)

Estimation of these models is carried out independently. Equation (1) and (2) are the
unrestricted version. The priors for the above models are the following,

ϑ ∼MN(a,A)
1

σ2
∼ Gamma(b1, b2), (3)

where ϑ = (µ, β1, β2) and Gamma(.) denotes gamma distribution with E(σ−2) = b1
b2
.

MN(a,A) is the multivariate normal distribution with the mean vector of a and variance
covariance matrix A. The restricted version of equations (1) and (2) are obtained with
β2 = 0.

The autoregressive Markov switching model with 2 states (MS2-AR) allows the
predictive power of explanatory variables to be regime-dependent. As suggested by
Hamilton & Lin (1996) and Kanas & Ioannidis (2010). This paper estimated this
model under the Bayesian approach. The following is the MS2-AR for stock market
returns:

rt =µst + β1strt−1 + β2stgt−1 + et st ∈ {1, 2} (4a)

et
iid∼ N(0, σ2

st) st|st−1 ∼ Πst−1 (4b)

where Π is the 1st order Markov transition matrix with dimension of 2, and Πst−1

represents the st−1 row of transition matrix of Π. Similarly, the MS2-AR for real
growth rates:

gt =µst + β1stgt−1 + β2strt−1 + et st ∈ {1, 2} (5a)

et
iid∼ N(0, σ2

st) st|st−1 ∼ Πst−1 (5b)

The priors for the MS2-AR:

ϑst ∼MN(a,A)
1

σ2
st

∼ Gamma(b1, b2) st ∈ {1, 2}, (6)

where ϑst = (µst , β1st , β2st). The restricted version of equations (4) and (5) are
obtained with β2st = 0. The prior for each row of transition matrix is the Dirichlet
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distribution. The posterior simulation of the MS2-AR is referred to Albert & Chib
(1993).

Adding hierarchical priors to Markov switching models with finite or infinite states
is a way of potentially improving the model performance. The hierarchical prior allows
the priors to learn from each regime in a similar way as posterior parameters learn from
the data rather than chosen by econometrician. Song (2013) and Maheu & Yang (2015)
find significant gains in out-of-sample density forecasts accuracy by adding hierarchi-
cal priors. As well, they discover the model performance is more robust in the prior
sensitivity test. The followings are the hierarchical prior for the equation (6):

a ∼MN(h0, H0) A−1 ∼ Wishart(d0, D0) (7a)

b1 ∼ Gamma(χ0, ν0) b2 ∼ Gamma(χ1, ν1), (7b)

where Wishart(d0, D0) denotes the Wishart distribution with d0 ≥ dim(ϑst) as degree
of freedom and D0 is the scale matrix with the same dimension of A−1.

2.2 Multivariate Approach

The vector autoregression (VAR) used by Lee (1992) and Hassapis & Kalyvitis (2002)
is to model stock market returns and real growth rates jointly.[

rt
gt

]
=

[
µ1

µ2

]
+

[
β1 β2

β3 β4

] [
rt−1

gt−1

]
+

[
ert
egt

]
(8a)

Σ =

[
σ2
r ρσrσg

ρσrσg σ2
g

]
and

[
ert
egt

]
iid∼ MN(0,Σ) (8b)

This paper applies the independent Normal-Wishart prior, which is referred to Koop
& Korobilis (2009).

ϑ ∼MN(a,A), Σ−1 ∼ Wishart(b, B) (9)

Let ϑ = (µ1, µ2, β1, β2, β3, β4)
T be the unrestricted version, where the restricted

version is obtained by β2 = β3 = 0.
The vector autoregressive Markov switching with two states (MS2-VAR) is intro-

duced by Hamilton & Lin (1996) and Kanas & Ioannidis (2010). They model the joint
time series by using two regimes, which correspond to a high and low volatile periods.
In contrast to the univariate Markov switch, an attractive feature of MS2-VAR is to
allow a unique Markov states to govern both time series.[

rt
gt

]
=

[
µ1st

µ2st

]
+

[
β1st β2st

β3st β4st

] [
rt−1

gt−1

]
+

[
ert
egt

]
, and

[
ert
egt

]
iid∼ MN(0,Σst) (10a)

Σ =

[
σ2
rst ρσrstσgst

ρstσrstσgst σ2
gst

]
st|st−1 ∼ Πst−1 st ∈ {1, 2}, (10b)
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The Π and Πst−1 are defined the same way as in MS2-AR. Let ϑst = (µ1st , µ2st , β1st ,
β2st , β3st , β4st)

T . The restricted version is obtained by β2st = β3st = 0. The priors for
MS2-VAR is the following:

ϑst ∼MN(a,A), Σ−1
st ∼ Wishart(b, B) st ∈ {1, 2}

The hierarchical priors for MS2-VAR are the following,

a ∼MN(h0, H0) A−1 ∼ Wishart(d0, D0) (11a)

B ∼ InvWhishart(e0, E0) b ∼ Gamma(χ0, ν0)I(b ≥ 2) (11b)

InvWhishart(e0, E0) denotes an inverse Wishart distribution with the degree of free-
dom of e0 and E0 be scale square matrix with dimension of 2.

3 Infinite Hidden Markov Model (IHMM)

An infinite hidden Markov model (IHMM) is based on a Bayesian nonparametric prior
introduced by Beal et al. (2002). Compared to the finite Markov switching model,
the IHMM extends the transition probability matrix of Markov switching model from
finite dimension to infinite dimension, which allows the model to learn the regime
dynamics through the data rather than fixing as prior. The IHMM builds on the
hierarchical Dirichlet process (HDP) priors, which is an extension of Dirichlet process
(DP). I initially discuss the DP and HDP before moving to the IHMM. Afterward, we
will discuss the corresponding univariate and multivariate setting of the IHMM.

3.1 Dirichlet Process (DP)

The Dirichlet process (DP) is introduced by Ferguson (1973). It is a distribution of
probability measures over a base probability measure; a formal definition of DP is
G ∼ DP (η,H). G is a random draw of a distribution based on H and η > 0 as a con-
centration parameter. A more helpful definition of the DP is introduced by Sethuraman
(1994), who actually constructs the G, and it is called a stick-breaking representation.

Let θ be the parameter set and δθi denote a probability mass at θi, in which case
then the stick-breaking representation of G ∼ DP (η,H) is,

πi = vi

i−1∏
l=1

(1− vl), vi
iid∼Beta(1, η), θi

iid∼H (12a)

G =
∞∑
i=1

πiδθi for i = 1, 2, . . . ,∞ (12b)

The representation in equation (12a) is denoted as {πi}∞i=1 ∼ Stick(η). The param-
eter η governs the distribution of the weight (πi) over a unit mass. A large value of η
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implies more numbers of different θi but less weight is assigned to each θi. On the other
hand, a small value of η indicates fewer numbers of θi but each θi is assigned with a
larger weight. It does not matter if H is a continuous or discrete probability measure
as G is always discrete. The DP is often applied as a Bayesian nonparametric prior
in econometrics. The Dirichlet mixture models is the direct application of using DP
priors. In recent years, a significant amount of empirical applications of DP have been
employed in econometrics.4

3.2 Hierarchical Dirichlet Process (HDP)

The Hierarchical Dirichlet process (HDP) is introduced by Teh et al. (2006) as a com-
bination of two Dirichlet processes (DP). The draw from the first DP is based on the
initial the base measure of H. This draw is treated as a base measure for the second DP.
Thus, both of the DP will share a common base measure. The HDP has a hierarchical
structure and it is constructed as the following,

G0|η,H ∼ DP (η,H) (13a)

Gj|α,G0∼DP (α,G0), j = 1, . . . ,∞, (13b)

The Gj is conditional on a global probability measure G0. The α and η are the
corresponding concentration parameters. If we use the stick-breaking representation,
we have the following,

G0 =
∞∑
i=1

γiδθi , Γ = {γi}∞i=1 ∼ Stick(η), θi
iid∼H, (14a)

Gj =
∞∑
i=1

πjiδθi , {πji}∞i=1
iid∼Stick2(α,Γ), (14b)

The Stick2(α,Γ)5 is constructed in the following way,

πji = π̂ji

i−1∏
l=1

(1− π̂jl), π̂ji
iid∼Beta

(
αγi, α

(
1−

i∑
l=1

γl

))
, (15)

Let j = 1, 2, . . . . and i = 1, 2, . . . .. Each Gj shares the same atoms with all other
Gj as well as G0, but all of the Gj and G0 have different weights. Regardless, H is
a continuous or discrete probability measure, where the Gj are always discrete, which
becomes a suitable way for representing probability weights in each row of the transition
matrix. Let Π be the infinite Markov transition matrix. Gj is served as the prior for
jth row of Π. The {πji}∞i=1 becomes the corresponding probability weights for jth row.

4examples are Jensen & Maheu (2010), Jensen & Maheu (2013), Song (2013) and Jensen & Maheu
(2014)

5Using the notation of Stick2(α,Γ) to represent the second DP is firstly used in Maheu & Yang
(2015).
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3.3 Infinite Hidden Markov Model (IHMM)

An infinite hidden Markov model (IHMM) extends Markov switching model with finite
dimension to infinite dimension. The key component of the IHMM is to construct the
priors for the infinite transition matrix; it is a special case of the hierarchical Dirichlet
process. This section discusses the general setting of the IHMM, the multivariate in-
finite hidden Markov model (IHMM-VAR), and the univariate infinite hidden Markov
model (IHMM-AR). There are papers which apply the univariate IHMM in various
empirical applications. For example, Song (2013) uses the IHMM to U.S. real interest
rates. Similarly, Jochmann (2015) applies the IHMM to U.S inflation rates, and Dufays
(2015) applies the IHMM to model stock volatilities. Maheu & Yang (2015) applies the
IHMM to U.S. 3-month T-Bill rates. Shi & Song (2015) uses the IHMM to detect the
speculative bubbles in NASDAQ stock market. Our model differs from their works by
extending to the multivariate IHMM (IHMM-VAR).

3.3.1 IHMM Basics

The state variable st follows a 1st order Markov with an infinite transition matrix, such
as st ∈ {1, 2, 3, . . . } which is the state variable at time t. The Πj is jth row of the
transition matrix. An element in Πj, such as πji is the probability of moving from state
j to state i.

{γi}∞i=1 = Γ|η ∼ Stick(η) θi
iid∼ H i = 1, 2, . . . , (16a)

Πj|α,Γ
iid∼ Stick2(α,Γ), j = 1, 2, . . . , (16b)

st|st−1,Πst−1 ∼ Πst−1 , t = 1, . . . , T (16c)

yt|st,Θ ∼ F (yt|θst). (16d)

In equations (16), two DPs construct the prior for Markov transition probability matrix
with infinite dimension. Each row of Πj is drawn from a DP prior with a base measure.
H represents the priors over the parameter space Θ. F (.) is the conditional density
function for observation yt. The η and α govern the distribution of the weights. Various
combinations of η and α can enforce different prior beliefs on the dimension of Markov
transition. For example, larger values of α and η allow for a higher possibility of
considering a new state. In order to best capture the joint state dynamics of stock
market returns and real growth rates, a hyper prior on α and η is placed so we can
infer them from the data rather than fixing them.

η ∼ Gamma(χ1, ν1) α ∼ Gamma(χ2, ν2) (17)

In contrast to finite Markov switching models, the unbounded transition matrix
allows for recurring regimes from the past, as well as new states to capture structural
changes in terms of estimating. In addition, the IHMM is able to introduce new states
to capture any potential structural changes into forecasts. To put his another way, the
flexible framework of IHMM allows the conditional distribution of yt to be constructed
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by infinite number of Gaussian mixture component. Therefore, this feature significantly
weakens the influence of distribution assumption on the innovation. For instance, with
any given forms of the error term, the IHMM can always achieve it by adjusting number
of mixture components as well as its corresponding parameters regardless either we
use t-distribution or Gaussian define each mixture component. The following is the
conditional distribution on yt+1,

f(yt+1|Θ, st) =
∞∑
i=1

πst,ip(yt+1|θi) (18)

3.3.2 IHMM-VAR

The multivariate infinite hidden Markov model (IHMM-VAR) for jointly modeling stock
market returns and real growth rates can be written as.

Γ|η ∼ Stick(η), Πj|α,Γ
iid∼ Stick2(α,Γ), j = 1, 2, . . . , (19a)[

rt
gt

]
=

[
µ1st

µ2st

]
+

[
β1st β2st

β3st β4st

] [
rt−1

gt−1

]
+

[
ert
egt

]
, and

[
ert
egt

]
iid∼ MN(0,Σst) (19b)

Σst =

[
σ2
rst ρσrstσgst

ρstσrstσgst σ2
gst

]
st|st−1,Πst−1 ∼ Πst−1 , t = 1, . . . , T (19c)

Let st ∈ {1, . . . ,∞} and ϑi = (µ1i, µ2i, β1iβ2i, β3i, β4). The priors for ϑi and Σi are
the following.

ϑi ∼MN(a,A) Σ−1
i ∼Wishart(b, B) i = 1, 2, . . . , (20)

The hierarchical prior for the IHMM is the same as equation (11) of MS2-VAR. The
restricted version is to set β2st = β3st = 0.

3.3.3 IHMM-AR

The univariate IHMM is the infinite hidden Markov model (IHMM-AR) is the following
example applies to the real growth rates,

Γ|η ∼ Stick(η), Πj|α,Γ
iid∼ Stick2(α,Γ), j = 1, 2, . . . , (21a)

gt = µst + β1stgt−1 + β2strt−1 + et et
iid∼ N(0, σ2

st) (21b)

st|st−1,Πst−1 ∼ Πst−1 , t = 1, . . . , T, st ∈ {1, . . . ,∞} (21c)

Let ϑi = (µi, β1i, β2i) and the priors are:

ϑi ∼MN(a,A)
1

σ2
i

∼ Gamma(b1, b2) i = 1, 2, . . . , (22)
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The restricted version of IHMM-AR on real growth rates is to let the β2st = 0. The
hierarchical priors are the the same as equation (7) of MS2-AR.

For IHMM-AR on stock market returns, all of the parts are the same except equa-
tions (21b) is replaced by the following,

rt = µst + β1strt−1 + β2stgt−1 + et et
iid∼ N(0, σ2

st) (23)

The restricted version is to set β2st = 0.

4 Posterior Sampling of IHMM

Chib (1996) introduces the forward-filter backward sampler (FFBS) to sample state
variables in the Markov switching models with fixed states. However, the FFBS is
not feasible for sampling IHMM due to its infinite dimension. The beam sampler
introduced by Van Gael et al. (2008) solves this issue. Basically, the beam sampler
adaptively truncates the infinite transition matrix of IHMM to a finite one so that the
FFBS can be applied.

The idea of the beam sampler is very close to the slice sampler by Walker (2007).
The beam sampler involves the introduction of auxiliary variables {u1:T}, which are
stochastically generated based on Π and corresponding state variables {st:T}. The ut

is draw from the following density function,

f(ut|st−1, st,Π) =
I(0 < ut < πst−1,st)

πst−1,st

, t = 1, . . . , T (24)

Once the ut is sampled, the forward step of the FFBS for st becomes the following,

p(st|y1:t, u1:t,Π) ∝ p(yt|y1:t−1, st)
∞∑

st−1=1

p(st−1|y1:t−1, u1:t−1,Π)I(ut < πst−1,st) (25)

Let yt be the observation at time t. The ut turns the summation from infinite number of
states into a finite one. Once the filter step is computed for t = 1, . . . , T , the backward
step for sampling state variable st for t = T − 1, . . . , 1, is the following,

p(st|st+1, y1:T , u1:T ) ∝ p(st|y1:t, u1:t)I(ut+1 < πst,st+1) (26)

In each Markov chain Monte Carlo (MCMC) iteration, the auxiliary variables, u1:T ,
effectively reduce the transition probability matrix to a finite dimension. The full
MCMC routine involves the following steps:

1. Sample s1:T |y1:T , u1:T ,Π 4. Sample θj|s1:T , y1:T , ξ, j = 1, . . . , K

2. Sample Πj|s1:T ,Γ, j = 1, . . . , K. 5. Sample Γ|s1:T , η
3. Sample u1:T |s1:T ,Π and update K 6. Sample ξ|θ1, . . . , θK , η|s1:T ,Γ and α|s1:T ,Γ.
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The details of sampling steps are included in Appendix. For full sample estimates,
the first 500,000 draws are the burn-in and the next 500,000 draws are for posterior
inference. Let M be the number of posteriors draws after burn-in. Any features of
posterior can be easily computed. For example, to compute posterior average of Σst

which is E[Σst |y1:T ] at time t is 1
M

∑M
l=1Σ

(l)
st .

5 Predictive Likelihood

The predictive likelihood measures the out-of-sample density forecast accuracy. In
contrast to point forecast, such as root mean squared forecast errors, the predictive
likelihood evaluate the predictive distribution as a whole, where point forecast only
focus on the central of the predictive distribution. Thus it is not surprise that two
methods deliver contradictory outcomes. A representation of predictive likelihood is
the following,

ρ(yT+1|y1:T ) =
∫
Θ

f(yT+1|θ, y1:T )ρ(θ|y1:T )dθ, θ ∈ Θ (27)

where the marginalization is taken with respect to ρ(θ|y1:T ) which is the predictive
posterior distribution of θ. y1:T are observations used for estimation and yT+1 is the
observation to predict. The Θ is the corresponding parameter set. Equation (27)
can also be used for evaluating the model fitting since the parameter uncertainties are
incorporated into the predictive likelihood computation such as the marginalization is
taken with respect ρ(θ|y1:T ). For computing log-predictive likelihoods, the first 10,000 is
the burn-in and the next 20,000 are for predictive inference. This paper uses a recursive
method on predictive inference, that is the last draw for predicting T + 1 will be used
for the initial draw of predicting T + 2.

Computing the predictive likelihood has two categorizes. One is under the uni-
variate setting. Such as models of the AR, MS2-AR and IHMM-AR. Their predictive
likelihoods on stock market returns and real growth rates are computed separately.
Another category is the multivariate setting6. In contrast to the univariate setting,
the joint predictive likelihood of stock market returns and real growth rates is feasible
to compute, where it is an available in univariate setting. An alternative approach
for computing the joint predictive likelihood under univariate setting is illustrated in
next section. Moreover, the marginal predictive likelihood of stock market returns and
real growth rates are feasible to compute under multivariate setting. All details are
illustrated in next several subsections.

5.1 AR

Calculating the predictive likelihood of the AR model for stock market returns is the
same as for real growth rates. For example, The predictive likelihood of real growth

6The bivariate setting means the models of the VAR, MS2-VAR and IHMM-VAR
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rates gT+1 at time T + 1: At lth MCMC draw that is estimated based on {g1:T} , a

sequence of posterior draws {µ(l)
1 , β

(l)
1 , β

(l)
2 , σ2(l)} is sampled. Let ϑ(l) = {µ(l)

1 , β
(l)
1 , β

(l)
2 }.

M is the total number of MCMC draws that are used for forecast inference. At each
MCMC iteration, the predictive distribution for gT+1 is actually a Gaussian distribution.
In order to calculate the predictive likelihood at gT+1, we plug-in the realization of gT+1.
Over all MCMC draws, we take the average. This routine applies to all models. The
predictive likelihood for gT+1 is the following,

p(gT+1|r1:T , g1:T ) ≈
1

M

M∑
l=1

N(gT+1|ϑ(l), σ2(l)) (28)

Similar steps are applied to calculating p(rT+1|r1:T , g1:T ).

5.2 MS2-AR

Computing the predictive likelihood of the MS2-AR models are the same as we do on
AR models except we need one extra step to forecast the state variable. The predictive
likelihood of gT+1 is calculated as the following steps. Give a sequence of lth MCMC

draw of {µ(l)
1i , β

(l)
1i , β

(l)
2i , σ

2(l)
i , s

(l)
1:T ,Π

(l)}. Let ϑi = {µ(l)
1i , β

(l)
1i , β

(l)
2i } for i = 1, 2. We firstly

draw the s
(l)
T+1 through Π

(l)
sT since s

(l)
T is given. Let the draw of s

(l)
T+1 = k. The predictive

likelihood of gT+1 is the following,

p(gT+1|r1:T , g1:T ) ≈
1

M

M∑
l=1

N(gT+1|ϑ(l)
k , σ

2(l)
k ) (29)

Similar steps are applied to calculating p(rT+1|r1:T , g1:T ).
For computing the joint predictive likelihood of p(rT+1, gT+1|r1:T , g1:T ) under uni-

variate models, we multiple the p(rT+1|r1:T , g1:T ) and p(gT+1|r1:T , g1:T ) due to their
independence. For example:

p(rT+1, gT+1|r1:T , g1:T ) = p(rT+1|r1:T , g1:T )p(gT+1|r1:T , g1:T ) (30)

5.3 VAR

In contrast to the ARmodel, computing p(rT+1|r1:T , g1:T ), p(gT+1|r1:T , g1:T ) and p(rT+1, gT+1|r1:T , g1:T )
can be done altogether in multivariate setting, such as VAR, MS2-VAR and IHMM-
VAR. For computing the marginal predictive likelihood of stock market returns, real
growth rates and joint predictive likelihood of them: we do the following steps. At lth
MCMC draw and a sequence of posterior draws is given by {µ(l)

1 , µ
(l)
2 , β

(l)
1 , β

(l)
2 , β

(l)
3 , β

(l)
4 ,Σ(l)}.

By simplifying notations , we let ϑ
(l)
r = {µ(l)

1 , β
(l)
1 , β

(l)
2 }, ϑ

(l)
g = {µ(l)

2 , β
(l)
3 , β

(l)
4 } and

Σ(l) = {σ2(l)
r , σ

2(l)
g , ρ(l)}. The marginal predictive likelihood for gT+1, rT+1 and the
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joint of them are the following,

p(rT+1|r1:T , g1:T ) ≈
1

M

M∑
l=1

N(rT+1|ϑ(l)
r , σ2(l)

r ) (31a)

p(gT+1|r1:T , g1:T ) ≈
1

M

M∑
l=1

N(gT+1|ϑ(l)
g , σ2(l)

g ) (31b)

p(rT+1, gT+1|r1:T , g1:T ) ≈
1

M

M∑
l=1

MN(rT+1, gT+1|ϑ(l)
r , ϑ(l)

g ,Σ(l)), (31c)

5.4 MS2-VAR

Given lth MCMC posterior draw: {µ(l)
1i , µ

(l)
2i , β

(l)
1i , β

(l)
2i , β

(l)
3i , β

(l)
4i ,Σ

(l)
i ,Π

(l)
i , s

(l)
1:T} and i ∈

{1, 2}. Let ϑ(l)
ri = {µ(l)

1i , β
(l)
1i , β

(l)
2i }, ϑ

(l)
gi = {µ(l)

2i , β
(l)
3i , β

(l)
4i } and Σ

(l)
i = {σ2(l)

ri , σ
2(l)
gi , ρ

(l)
i }. For

computing the marginal predictive likelihood of rT+1, gT+1, and the joint of them; We

initially draw the s
(l)
T+1 through Π

(l)
sT with given s

(l)
T . Let the draw of s

(l)
T+1 = k and

k ∈ {1, 2}. We have the followings,

p(rT+1|r1:T , g1:T ) ≈
1

M

M∑
l=1

N(rT+1|ϑ(l)
rk , σ

2(l)
rk ) (32a)

p(gT+1|r1:T , g1:T ) ≈
1

M

M∑
l=1

N(gT+1|ϑ(l)
gk , σ

2(l)
gk ) (32b)

p(rT+1, gT+1|r1:T , g1:T ) ≈
1

M

N∑
l=1

MN(rT+1, gT+1|ϑ(l)
rk , ϑ

(l)
gk ,Σ

(l)
k ) (32c)

5.5 IHMM-AR

Let {ϑ(l)
i , σ

(l)
i ,Π(l), s

(l)
1:T , K

(l), ξ(l)}, ϑi = {µ(l)
1i , β

(l)
1i , β

(l)
2i } and i ∈ {1, . . . , K(l)} be the lth

posterior draws, where K(l) is the total number of active states, which means at least
one observation is assigned. s

(l)
t ∈ {1, . . . , K(l)}. The steps are the following,

1. For each lthe MCMC draw, simulate a state variable of s
(l)
T+1 given s

(l)
T according

to Π
(l)
sT .

2. If s
(l)
T+1 ≤ K(l), which suggests the gT+1 or its corresponding sT+1 belong to

existing states, then set (ϑ
(l)
sT+1 , σ

2(l)
sT+1) ≡ (ϑ

(l)
k , σ

2(l)
k ), where k ∈ (1, . . . , K(l)). Oth-

erwise, (ϑ
(l)
k , σ

2(l)
k ) ∼ H(ξ(l)) and thus, (ϑ

(l)
sT+1 , σ

2(l)
sT+1) ≡ (ϑ

(l)
k , σ

2(l)
k ). This implies

the gT+1 belongs to a brand new state, which is a draw from the informative prior.
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The predictive likelihood of gT+1 over all MCMC draws is the following,

p(gT+1|r1:T , g1:T ) ≈
1

M

M∑
l=1

N(gT+1|ϑ(l)
k , σ

2(l)
k ), (33)

The same rule is applied to computing predictive likelihood of rT+1 of IHMM-AR.
One advantage of calculating the predictive likelihood under the IHMM is to allow the
new states to be introduced for predicting any potential structural changes.

5.6 IHMM-VAR

The similar rule is applied in IHMM-VAR as we applied in IHMM-AR except all the
parameters are jointly sampled in IHMM-VAR. Let {ϑ(l)

ri , ϑ
(l)
gi ,Σ

(l)
i ,Π(l), s

(l)
1:T , K

(l), ξ(l)}
be the lth posterior draw. Some extra notations: ϑ

(l)
ri = {µ(l)

1i , β
(l)
1i β

(l)
2i } and ϑ

(l)
gi =

{µ(l)
2i , β

(l)
3i β

(l)
4i }, Σ

(l)
i = {σ2(l)

ri , σ
2(l)
gi , ρ

(l)
i } and i ∈ {1, . . . , K(l)}, s(l)t ∈ {1, . . . , K(l)}, and M

is total number of MCMC draws that will be used for forecast inference. The predictive
likelihood of rT+1, gT+1 and the joint of them is the following,

1. For each lthe MCMC draw, simulate a state variable for s
(l)
T+1 given s

(l)
T according

to Π
(l)
sT .

2. If s
(l)
T+1 ≤ K(l), which suggests the gT+1 and rT+1 or their sT+1 belong to existing

states, then set (ϑ
(l)
rsT+1 , ϑ

(l)
gsT+1 ,Σ

(l)
sT+1) ≡ (ϑ

(l)
rk , ϑ

(l)
gk ,Σ

(l)
k ), where k ∈ {1, . . . , K(l)}.

Otherwise, it implies rT+1 and gT+1 to a brand new state. (ϑ
(l)
rk , ϑ

(l)
gk ,Σ

(l)
k ) ∼ H(ξ(l))

and thus, (ϑ
(l)
rsT+1 , ϑ

(l)
gsT+1 ,Σ

(l)
sT+1) ≡ (ϑ

(l)
rk , ϑ

(l)
gk ,Σ

(l)
k ).

p(rT+1|r1:T , g1:T ) ≈
1

M

M∑
l=1

N(rT+1|ϑ(l)
rk , σ

2(l)
rk ) (34a)

p(gT+1|r1:T , g1:T ) ≈
1

M

M∑
l=1

N(gT+1|ϑ(l)
gk , σ

2(l)
gk ) (34b)

p(rT+1, gT+1|r1:T , g1:T ) ≈
1

M

M∑
l=1

MN(rT+1, gT+1|ϑ(l)
rk , ϑ

(l)
gk ,Σ

(l)
k ) (34c)

6 Empirical Results

6.1 Data

This paper reflects the data in a similar way to that of Hamilton & Lin (1996) and
Fama (1990), but our sample period is largely extended. There is 1067 observations for
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each series, which are dated from February 1926 until December 2014. The monthly
value-weighted return (includes dividend yield) of S&P500 minus the 3-month average
of Fama risk-free rate (quoted at monthly rates) from CRSP are used to construct the
monthly excess stock market returns (rt), which is labelled as stock market returns in
this paper. The industrial production (IP) index is from the Federal Reserve. The
real growth rates (gt) are the change of natural logarithm of IP index. The stock
market returns and real growth rates are scaled by 100. Figure 1 shows the plot of
corresponding stock market returns and real growth rates. Table 1 illustrates their
statistical summaries.

6.2 Model Priors

Due to the fact that the hierarchical prior is not feasible on AR and VAR models7,
the priors of AR and VAR are chosen by preference. For AR model, a is a vector of
zeros, and A is an identity matrix with a dimension of P. If the restricted version is
applied, P = 2. Otherwise, P = 3. Let b1 = 5 and b2 = 1. For VAR, ϑ ∼ MN(0, IP )
and Σ ∼ Wishart(3, I2). IP is an identity matrix with the size of P . P = 4 when the
restricted version is applied, otherwise P = 6.

For MS2-AR, MS2-VAR, IHMM-AR, and IHMM-VAR models, it is feasible to im-
plement hierarchical priors. For MS2-AR and IHMM-AR, a ∼ MN(0, IP ), A−1 ∼
Wishart(3, IP ), where P = 4 while restriction is imposed, otherwise P = 6. For the
hyper-prior of σ2

st , let χ3 = χ4 = 5 and ν3 = ν4 = 1.
For MS2-VAR and IHMM-VAR, h0 is a vector of zeros, H0 = D0 = IP , d0 = P + 1,

where P = 4 when the restricted version is applied; otherwise, P = 6. For other hyper
priors, let e0 = 2, E0 = I2, χ3 = 5 and ν3 = 1.

For hyper priors for η and α, let χ1 = χ2 = 5 and ν1 = ν2 = 1. The choices
of priors and hierarchical priors are applied to both full sample estimation as well as
out-of-sample forecast.

6.3 Out-of-Sample Forecast

The log-predictive likelihood is used as a measurement for model selection, and it
evaluates the forecast accuracy based on a selected out-of-sample period. Let the τ1
and τ2 be the beginning and the end of the out-of-sample period. The log-predictive
likelihood for real growth rates (LPLg), stock market returns (LPLr) and joint of them

7The hierarchical priors requires mixture models such as Markov switch with two states. The AR
and VAR models implicitly assumes one state.
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(LPLjoint) are the following,

LPLr = log

τ2∏
t=τ1

p(rt+1|r1:t, g1:t) =
τ2∑

t=τ1

log p(rt+1|r1:t, g1:t) (35a)

LPLg = log

τ2∏
t=τ1

p(gt+1|r1:t, g1:t) =
τ2∑

t=τ1

log p(gt+1|r1:t, g1:t) (35b)

LPLjoint = log

τ2∏
t=τ1

p(rt+1, gt+1|r1:t, g1:t) =
τ2∑

t=τ1

log p(rt+1, gt+1|r1:t, g1:t) (35c)

The LPLr, LPLg and LPLjoint for all the models are reported in Tables 2, 3 and 4.
The out-of-sample period is dated from τ1 = 100 (May, 1934) to τ2 = 1067 (December,
2014). The LPLjoint of the univariate setting is the summation of their LPLr and
LPLg.

The log-predictive Bayes factor is formed by subtracting the log-predictive likelihood
between any two models. For example, the log-predictive Bayes factor on stock market
returns between IHMM-VAR and VAR is the LPLr of IHMM-VAR subtracts the LPLr

of VAR, where values in excess of 5 are considered strongly in favour of the IHMM-VAR.
Instead of using a single entry to indicate the density forecast accuracy on the entire

out-of-sample period, like the ones in Tables 2, 3, and 4, the cumulative log-predictive
Bayes factor is a sequence of log-predictive Bayes factors and shows the predictive
density accuracy on every single out-of-sample. For example, with respect equations
(35a), we can compute LPLr at τ2 = 100, 101, 102 . . . 1067 while τ1 = 100 for any two
models. It will be a a sequence of LPLr with respect to an recursive increasing time
period. Consequently, log-predictive Bayes factors with respect to τ2 = 100, . . . 1067 are
generated, and they represent the corresponding cumulative log-predictive Bayes factor
for stock market returns. Figure 3 shows the cumulative log-predictive Bayes factor on
stock market returns between IHMM-VAR and benchmark models. The cumulative log-
predictive Bayes factor is able to tell whether or not the superior forecast performance
between any two models is due to any certain period, to outliers or to steady ongoing
gains.

6.4 The Out-of-Sample Forecast

The IHMM-VAR shows a significant gain in the log-predictive likelihood for real growth
rates (LPLg), stock market returns (LPLr), and joint of them (LPLjoint) compared to
benchmark models. The restricted version of the IHMM-VAR shows the most superior
performance in terms of LPLr, LPLg and LPLjoint among all the models. These
outcomes suggest the IHMM-VAR is the most preferable model among all benchmark
models in terms of out-of-sample forecast accuracy.

Table 2 illustrates the LPLjoint of all models, where the IHMM-VAR outperform
the second best model (MS2-VAR) by 77 and 98 units with respect to unrestricted and
restricted versions. Similarly, table 3 shows that the IHMM-VAR is the best model in

16



terms of LPLr, a which shows substantial improvements with respect to second best
model (MS2-VAR) by 14 and 13 with respect to unrestricted and restricted versions.
Table 4 shows the LPLg of each model, where the IHMM-VAR surpasses the second best
models, the MS2-VAR, by 64 and 87 by corresponding to unrestricted and restricted
versions.

The cumulative log-predictive Bayes factor are worth investigating since they can
tell whether or not the superior forecast of the IHMM-VAR is due to a certain period,
or to steady ongoing gains. Figure 2 illustrates the cumulative log-predictive Bayes
factor on joint of stock market returns and real growth rates between the IHMM-VAR
and all other benchmark models. All of the plots in Figure 2 show constant increasing
trend, which suggests that the superior forecast accuracy of the IHMM-VAR in Table
2 is not due to any particular period or outliers, but steady ongoing gains. Similar
outcomes are reflected in Figure 3 and Figure 4, which correspond to the cumulative
log-predictive Bayes factor on stock market returns and real growth rates. In Figure 3,
the subplot for the IHMM-VAR and the MS2-VAR indicates the IHMM-VAR perform
better only in certain periods for predicting stock market returns.

6.5 Posterior Analysis and Prior Robustness

Figure 5 and Figure 6 shows the posterior average and interval for parameters in the
IHMM-VAR of a restricted version. A lot of dynamic changes are captured in terms
of posterior average and posterior interval. Notably, the Great Depression and Second
World War are the two most volatile periods during the joint relationship of stock
market returns and real growth rates.

The nonparametric nature of the IHMM-VAR allows the states space to be inferred
through the data, so it can therefore always accommodate data with new features by
introducing extra states. The histogram in Figure 7 represents the posterior distribution
of states number. On average, the IHMM-VAR uses 20 states to characterize the data
given the hyper-prior and hierarchical priors suggested in the previous section. Figure 8
illustrates how frequently the IHMM-VAR introduces new states; the average posterior
of states number in Figure 8 is computed under a recursive increasing sample from mid
1934 until the end of 2014.

Table 5 investigates the priors sensitivity on the IHMM-VAR. The priors are inferred
through the states variables under our hierarchical priors setting. We select various
combination of hyper-priors on concentration parameters α and η, which governs the
prior on the space of states number. The out-of-sample forecast performance of the
IHMM-VAR is very robust to various choices hyper-priors in Table 5.

6.6 Structural Break at 1984

The IHMM-VAR not only detects a structural break at early 19848, but also shows its
impact on out-of-sample forecast. Figure 9 is a heat map and shows the probability of

8Great Moderation.
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sharing the same states between any two dates. The heat map allows us to recognize
the structural break at exact dates. We observe that the months after 1984 have
almost zero probability of sharing the same states with the months before 1984, which
is indicative of a structural break at 1984. The issue is that the heap map relies on the
state variables, which ignores actual parameters’ changes underneath the state variable.

Figure 5 and Figure 6 illustrate the posterior mean and interval of parameters in the
IHMM-VAR, they reflect the impact of structural break on the parameters’ dynamics.
Figure 5 indicates that the structural change at 1984 not only affects the posterior
mean of µ1st , µ2st , β1st and β2st , but also changes its posteriors’ interval after 1984. For
example, the posterior of β2st completely shifts downward with a more concentrated
density after 1984. The shrinked posterior interval implies the lagged real growth rates
have a more certain predictive power for future growth rates after 1984. The downward
shift of the posterior mean suggests the lagged real growth rates changes its relation
with future real growth rates from a positively correlated to a negatively correlated
relation. As similar outcome is illustrated in Figure 6, which are the posterior mean
and intervals of σrst , σgst and ρst . Both figure 5 and figure 6 suggest the significant
impact of structural break on parameter changes; however, they do not imply that
the structural break has a significant impact in an out-of-sample forecast. In other
words, given that the 1984 structural break does exist, and that it is captured by the
IHMM-VAR while other benchmark models which fail to do, the IHMM-VAR should
indicate a significant improvement on the out-of-sample forecast accuracy with respect
to approaches fail to model the structural break.

Figure 10 shows the cumulative log-predictive Bayes factor between the IHMM-VAR
and the MS2-VAR on real growth rates. It is clear that the IHMM-VAR is constantly
in favoured of the out-of-sample performance. Notably, the IHMM-VAR is in favour
more, while the model predicts the period after 1984 structural change, and this is
why the cumulative log-predictive Bayes factor shows a steeper slop after 1984. This
implies that the IHMM-VAR not only captures the dynamic changes through the pos-
terior of parameters and state variables, but also shows that what have been captured
significantly contribute to out-of-sample density forecast accuracy. As mentioned early,
the IHMM-VAR is able to automatically introduce new states to accommodate any
structural changes, therefore compared to Markov switching with two-state model, the
IHMM-VAR can deliver a much more superior out-of-sample forecast. In contrast to
Kim & Nelson (1999), this paper documents the impact of the 1984 structural break in
parameter changes as well as in out-of-sample forecast.

6.7 Empirical Results

The asset pricing literature suggests9 the stock market returns should have predictive
power for future economic growths, while existing works suggest the lag stock market

9According to dividend discount valuation and consumption capital asset pricing model.
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returns variables should have predictive power on real growth rates10. This paper
does not find any strong evidence to support this; however, we find other important
empirical evidence to support that the stock market returns can help to predict future
real growth rates. This paper documents that the common unobserved states variables
actually capture the most predictive power for future growth rates, rather than the
lagged stock market returns.

Table 6 is the log-predictive Bayes factor between unrestricted and restricted ver-
sions of each model. Table 6 shows whether or not adding lagged stock market returns
variable can help to predict real growth rates. Mixed evidence of predictive power
of lagged stock market returns for real growth rates are found in benchmark models.
Given the most preferred model of IHMM-VAR11, no evidence shows the rt−1 has pre-
dictive power for gt. Similar outcomes happen to MS2-VAR, and AR, which suggests
inconsistent results with respect to Fama (1990) and Choi et al. (1999). On the another
side, Table 6 suggests that lagged stock market returns are significantly accounted for
predicting future real growth rates in the MS2-AR, IHMM-AR and VAR models. They
are consistent with Lee (1992), Hassapis & Kalyvitis (2002), and Kim & In (2003).
However, these models are less reliable according to Table 4, and it reveals that these
models are poorly performed in term of out-of-sample forecast accuracy. Table 3 sug-
gests the lagged real growth rates (gt−1) do not have any predictive power for stock
market returns (rt) for any models.

According to Table 4, the out-of-sample forecast on real growth rates is remarkably
improved from the AR to the IHMM-VAR. The IHMM-AR shows a remarkable gain
in LPLg with respect to the AR model. The gains are 903 and 873 with respect to
unrestricted and restricted versions. Under this univariate setting, the IHMM-AR fully
explores the regimes dynamics without considering the contemporaneous relationship;
the gain in density forecast accuracy implies the necessity of modeling the parameter
regime-dependence. On the other hand, the VAR model shows a remarkable increase of
894 (unrestricted version) and 879 (restricted version) with respect to the AR model.
This suggests modeling the contemporaneous relationship is a critical component for
capturing the dynamic relationship of stock market returns and real growth rates. The
IHMM-VAR delivers a significant gain in LPLg with respect to the IHMM-AR and VAR
in Table 4. Given that the restricted version of the IHMM-VAR is the best performed
model, there is no evidence to support that lagged stock market returns should help
to predict future real growth rates. But the IHMM-VAR illustrates that the predictive
power of stock market returns for future real growth rates are captured by the the
unobserved Markov states variables which are shared by two time series, rather than
the lagged stock market returns variables.

10Fama (1990), Schwert (1990), Choi et al. (1999) and Kanas & Ioannidis (2010) suggest the lagged
stock market returns should help to predict future real growth rate

11Based on the out-of-sample forecast performance in Table 2, Table 3 and Table 4.
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7 Conclusion

This paper proposes a Bayesian nonparametric model that allows the conditional distri-
bution of stock market returns and real growth rates to be an joint unknown distribu-
tion. Once having applied this new model to monthly U.S stock market excess returns
and real growth rates, I discover significant parameter changes over time. The new
model significantly improves the out-of-sample density forecast accuracy. The paper
finds recurring regimes as well as structural break. This paper does not find robust
evidence to support that the lagged stock market returns predict real growth rates.
However, we find that the predictive power of stock market returns on real growth
rates are captured by the unobserved Markov states variables, rather than the lagged
stock market returns variables.
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8 Sampler Steps

The details of sampling steps are described in this section. It is for the vector autoregres-
sive infinite hidden Markov model (IHMM-VAR). y1:T are observations and yt = (rt, gt).
The 1st MCMC draw is randomly initialized state variables s1:T and Γ. Some notations:
θi = (µ1i, β1i, β2i, µ2i, β3i, β4i,Σi). K is the total number of acting states.

1. Sample c1:K ,

(a) Draw xl ∼ Bernoulli( αγi
l−1+αγi

), for l = 1, . . . , nji: if xl = 1 increment oji, for{
{nji}Kj=1

}K
i=1

.

(b) Compute cj =
∑K

i=1 oji

2. Sample α given χ2, and ν2:

Two auxiliary variables, ν̄ and λ̄.

(a) ν̄j ∼ Bernoulli(
nj.

nj.+α
) for j = 1, . . . , K. nj. =

∑K
i=1 nji

(b) λ̄j ∼ Beta(α + 1, nj.) for j = 1, . . . , K.

(c) α ∼ Gamma
(
χ2 + c.. −

∑K
j=1 ν̄j, ν2 −

∑K
j=1 log(λ̄j)

)
c.. =

∑K
j=1 cj

3. Sample η given χ1 and ν1.

Two auxiliary variables are used in here, , ν̄ and λ̄.

(a) ν̄ ∼ Bernoulli( c..
c..+η

)

(b) λ̄ ∼ Beta(η + 1, c..)

(c) η ∼ Gamma(χ1 +K − ν̄, ν1 − logλ̄),

4. Sample Γ:

Γ = (γ1, . . . , γK ,
∞∑

l=K+1

γl)|c1:K , η ∼ Dir(c1, c2, . . . , cK , η)

γK+1 =
∑∞

l=K+1 γl

5. Sample Πj: for j = 1, . . . , K

Πj = πj1, πj2, . . . , πjK+1|α, nj,1:K ∼ Dir(αγ1 + nj1, . . . , αγK + njK , αγK+1)
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6. Sample u1:T :

f(ut+1|st+1, st) =

{ I(ut<πstst+1 )

πstst+1
ut ≤ πst,st+1

0 ut > πst,st+1

Note, u1 ∼ U [0, γs1 ] and ut ∼ Uniform[0, πst−1,st ]

7. Adaptive Truncation of Π:
If max({πj,K+1}Kj=1) > min(u1:T ), we do the following steps:

(a) (πK+1,1, . . . , πK+1,K+1) ∼ Dir(αγ1, . . . , αγK+1).

(b) Increment the γ to size of K+2 with

τ ∼ Beta(1, η) and γK+2 = (1− τ)γK+1 and γK+1 = τγK+1

(c) Extend the
{
{πji}Kj=1

}K+1

i=1
to
{
{πji}K+1

j=1

}K+2

i=1
by

τj ∼ Beta(αγK+1,αγK+2) πj,K+1 = τjπj,K+1 πj,K+2 = (1− τj)πj,K+1

Once the new state is generated, the corresponding new parameter set will
be assigned, such as θK+1 ∼ H(ξ).

K ← K + 1 and keep repeating steps from a) to c) until the requirement is
satisfied. Intuitively, we adaptively truncate Π using u1:T from infinite dimension
into finite dimension denoted by Π̄ as well as the associated full parameter space
Θ into a set of finite set is denoted by Θ̄12.

8. Sample s1:T

(a) Initial step for s1:

p(s1 = k|y1, θk) ∝ f(y1|s1 = k, θk)
K∑
i=1

I(γi > u1) for k = 1, . . . , K

πsit−1,s
k
t
stands for πst−1=i,st=k

(b) The forward-filtering part for s2:T :

p(st = k|yt, θk) ∝ f(yt|st = k, θk)
K∑
i=1

I(πsit−1,s
k
t
> ut)p(st−1 = i|yt−1, θi)

do k = 1, . . . , K for each t = 2, . . . , T .

F =

 p(s1 = 1|y1, θ1) p(s1 = 2|y1, θ2) . . . p(s1 = K|y1, θK)
...

...
. . .

...
p(sT = 1|yT , θ1) p(sT = 2|yT , θ2) . . . p(sT = K|yT , θK)

 .

12A finite number of θ which will be considered in the FFBS, includes all alive states and finite
number of unrepresented states.
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(c) Sample initial sT :

sT ∝ p(sT = k|yT , θk) for k = 1, . . . , K

(d) Sample sT−1:1 recursively. i indicates previous state:

P (st = k|st+1 = i, yt, θk) ∝ I(πskt ,s
i
t+1

> ut+1)Ft,k

for t = T − 1, . . . , 1.

9. Sample θ1:K : Let ϑk = (µ1k, β1k, β2k, µ2k, β3k, β4k)
′ for k=1.. . . ,K. Let Tk be the

total number observations are assigned to state k. yt = (rt, gt)
′.

yt = Ztϑst + ϵt ϵt ∼MN(0,Σst),

where,

Zt =

[
1 yt−1 0 0
0 0 1 yt−1

]
The posterior of ϑk is the following,

ϑk|yt, Zt,Σ
−1
k , a, A ∼MN(a1,A1) k = 1, . . . , L

a1 = A1

(
A−1a+

∑
st=k

Z ′
tΣ

−1
k yt

)
A1 =

(
A−1 +

∑
st=k

Z ′
tΣ

−1
k Zt

)−1

The posterior of Σ−1
k is the following,

Σ−1
k |ϑk, yt, Zt, b, B ∼ Wishart(b1, B1)

b1 = Tk + b B1 =
(
B−1+

∑
st=k

(yt − Ztϑk)(yt − Ztϑk)
′
)−1

10. Sample the priors through hierarchical priors. The priors are following:

ϑk ∼MN(a,A) Σ−1
i ∼ Wishart(b, B) k = 1, , . . . , K

The hierarchical priors the following:

a ∼MN(h0, H0) A−1 ∼ Wishart(d0, D0)

B ∼ InvWhishart(e0, E0) b ∼ Gamma(χ0, ν0)I(b ≥ 2)

(a) Sample a:

a|h0, H0, A, {ϑk}Kk=1 ∼MN
(
µa, Va

)
µa = Va

(
H−1

0 h0 + A−1

K∑
1

ϑk

)
Va =

(
H−1

0 +KA−1
)−1
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(b) Sample A:

A−1|d0, D0, a, {ϑk}Kk=1 ∼ Wishart(ωA,ΩA)

ωA = K + d0 ΩA =
(
D−1

0 +
K∑
k=1

(ϑk − a)(ϑk − a)′
)−1

(c) Sample B:

B|b, e0, E0, {Σi}K1 ∼ InvWishart(bK + e0, E0 +
K∑
k=1

Σ−1
k )

(d) Sample b:

Due to non-conjugate property, the Metropolis-Hastings is applied with pro-
posal a density. We choose ζ to arrives at reasonable accept frequencies. M
is the dimension of the data.

π(b|χ0, ν0, B, {Σk}Lk=1) = G(b|χ0, ν0)
K∏
1

Wishart(Σ−1
k |b, B)

q(bnew|bold) ∼ Gamma(ζ, ζ/bold)I(bnew ≥M + 1)

AcceptProbability = min
[π(bnew|χ0, ν0, {Σk}K1 )/q(bnew|bold)
π(bold|χ0, ν0, {Σk}K1 )/q(bold|bnew)

, 1
]

11. Repeat 1-10.
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Table 1: Statistical Summaries of stock market returns and Real Growth Rates

Name Mean Variance Median 25%Q 75%Q Skewness Kurtosis

stock market returns 0.648 30.24 0.945 -2.043 3.595 0.409 9.603
Real Growth Rates 0.263 3.211 0.308 -0.304 0.846 0.354 14.87

This table reports summary statistics for monthly S&P 500 stock excess returns and U.S. industrial production
growth rates from February 1926 to December 2014 (1067 observations).

Table 2: Log-Predictive Likelihood on Joint of
Stock Market Returns and Real Growth (LPLjoint)

Univariate Unrestricted Restricted

AR -6591 -6589
MS2-AR -4689 -4721
IHMM-AR -4672 -4701

Bivariate Unrestricted Restricted

VAR -4659 -4672
MS2-VAR -4230 -4165
IHMM-VAR -4153 -4067

The out-of-sample period is from May 1934 to December 2014 (with a size of 967).
The full sample size is 1067. The IHMM and MS2 are corresponding to the infinite
Hidden Markov models and two-state Markov switching model. The AR and VAR
imply autoregression and vector autoregression.

Table 3: Log-Predictive Likelihood on Stock Market Returns (LPLr)

Models Unrestricted Restricted

AR -3986 -3986
MS2-AR -2973 -2974
IHMM-AR -2970 -2971

VAR -2954 -2951
MS2-VAR -2810 -2807
IHMM-VAR -2796 -2794

The out-of-sample period is from May 1934 to December 2014 (with a size of 967).
The full sample size is 1067. The difference in LPLr between the unrestricted and
restricted versions are to distinguish if the past real growth rates have predictive
power on future stock market returns. The AR, MS2-AR and IHMM-AR are under
univariate setting. The VAR, MS2-VAR, and IHMM-VAR belong to a bivariate
setting.
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Table 4: Log-Predictive Likelihood on Real Growth Rates (LPLg)

Unrestricted Restricted

AR -2605 -2603
MS2-AR -1716 -1747
IHMM-AR -1702 -1730

VAR -1711 -1724
MS2-VAR -1416 -1360
IHMM-VAR -1352 -1273

The out-of-sample period is from May 1934 to December 2014 (with a size of 967).
The full sample size is 1067. The difference in LPLr between the unrestricted and
restricted versions is to distinguish if the past real growth rates have predictive
power on the future stock market returns. The AR, MS2-AR and IHMM-AR are
under a univariate setting. The VAR, MS2-VAR and IHMM-VAR are belong to
a bivariate setting.

Table 5: Log-Predictive Likelihood on Joint Stock Returns and Growth Rates of
IHMM-VAR (Restricted Version) with Different Hyper Priors

Very Loose χ1 = 5, ν1 = 1 and χ1 = 5, ν1 = 1 -4067

Less Loose χ1 = 5, ν1 = 1 and χ1 = 2.5, ν1 = 0.5 -4066
Tight χ1 = 2, ν1 = 1 and χ1 = 5, ν1 = 1 -4064

Less Tight χ1 = 5, ν1 = 1 and χ1 = 2, ν1 = 8 -4068
Very Tight χ1 = 2, ν1 = 2 and χ1 = 2, ν1 = 8 -4069

Table 6: Predictive Power of lagged stock market returns on
Future Real Growth Rates

Log-Predictive Do Lagged Stock Returns
Bayes Factor Contribute to Forecast Real Growths?

AR -2 No
MS2-AR 31 Yes
IHMM-AR 28 Yes

VAR 13 Yes
MS2-VAR -6 No
IHMM-VAR -18 No

The log-predictive Bayes factor is the log-predictive likelihood of the unrestricted version
subtracted by the restricted version. If the log-predictive Bayes factor is less than 5, this
suggests the lagged stock market returns DOES NOT have predictive power on the future
real growth rates. The out-of-sample period is from May 1934 until December 2014 (with a
size of 967). The full sample size is 1067.
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Figure 1: S&P 500 Monthly Excess stock market returns (Top)
U.S Industrial Production Growth Rates (Bottom)

Note: The horizontal axis represents the years and months.
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Figure 2: Cumulative Log-Predictive Bayes Factor on Joint Stock Market Returns
and Real Growth Rates

The horizontal and vertical axis represent corresponding dates and log-likelihood. Each plot shows the cumulative
log-predictive Bayes factor between IHMM-VAR and the corresponding benchmark model. The out-of-sample
period is from May 1934 to December 2014 (with a size of 967). The full sample size is 1067.
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Figure 3: Cumulative Log-Predictive Bayes Factor on Stock Market Returns

The horizontal and vertical axis represent corresponding dates and log-likelihood. Each plot shows the cumulative
log-predictive Bayes factor between IHMM-VAR and the corresponding benchmark model. The out-of-sample
period is from May 1934 to December 2014 (with a size of 967). The full sample size is 1067.
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Figure 4: Cumulative Log-Predictive Bayes Factor on Real Growth Rates

The horizontal and vertical axis represent corresponding dates and log-likelihood. Each plot shows the cumulative
log-predictive Bayes factor between IHMM-VAR and the corresponding benchmark model. The out-of-sample
period is from May 1934 to December 2014 (with a size of 967). The full sample size is 1067.
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Figure 5: Posterior of Parameter for the IHMM-VAR (Restricted Version)

The red and blue lines are corresponding 10% and 90% posterior interval. The black line
is the posterior average. The vertical orange line indicates the structural break date.
The horizontal green line indicates zero. The estimations are under the IHMM-VAR
(Restricted Version) and based on the full sample. Comparing with the unrestricted
version of IHMM-VAR, the restricted version β2st = 0 and β3st = 0.
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Figure 6: Posterior of Parameter for the IHMM-VAR (Restricted Version)

The red and blue lines are corresponding 10% and 90% posterior interval. The black line
is the posterior average. The vertical orange line indicates the structural break date.
The horizontal green line indicates zero. The estimations are under the IHMM-VAR
(Restricted Version) and based on the full sample.
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Figure 7

The histogram shows the posterior of regime
number. The estimations are based on IHMM-
VAR(Restricted Version) and full samples.

Figure 8: Regime Dynamics under Recursive Increasing Sample

This figure shows the posterior average of the regime number under a recursive in-
creasing sample as indicated on the x-axis. The estimations are based on IHMM-VAR
(Restricted Version).
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Figure 9: Heat Map

The color represents the probability level. The map is symmetric through the 45 degree
diagonal line originated from the bottom left. The label switching does not matter here
since we only care if the two dates share the same state at each MCMC. A dummy
variable is used to indicate if they share the same regime. Then, the summation of the
dummies for those two particular dates is divided by the total number of MCMC, which
represents the probability of sharing the same state of those two dates. This heat map
is estimated based on IHMM-VAR (Restricted Version).
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Figure 10: Cumulative Log-Predictive Bayes Factor Plot Between IHMM-VAR and
MS2-VAR

Each plot has a vertical black line, which indicates the month of structural change. Re-
stricted implies the cumulative log-predictive Bayes factor of restricted version between
the IHMM-VAR and MS2-VAR. The same rule applies to the unrestricted version.
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