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Abstract

This paper introduces a new approach to forecast pooling methods based on a nonpara-
metric prior for the weight vector combining predictive densities. The first approach places a
Dirichlet process prior on the weight vector and generalizes the static linear pool. The second
approach uses a hierarchical Dirichlet process prior to allow the weight vector to follow an in-
finite hidden Markov chain. This generalizes dynamic prediction pools to the nonparametric
setting. We discuss efficient posterior simulation based on MCMC methods. Detailed ap-
plications to short-term interest rates, realized covariance matrices and asset pricing models
show the nonparametric pool forecasts well.
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1 Introduction
This paper introduces several nonparametric extensions to prediction pools. We use Dirichlet
process based priors to impose structure on the support of model weights and how they change
over time. Detailed applications to short-term interest rates, realized covariance matrices and asset
pricing models shows the forecasts for the nonparametric pools to perform well.

Since Hall & Mitchell (2007) and Geweke & Amisano (2011) there has been considerable interest
in model pooling methods. This is a density combination approach that combines several predictive
densities to form a forecast. A significant feature of this approach is that unlike Bayesian model
averaging it recognizes that the true model may not be in the model set. This density combination
approach has had many applications and important extensions that allow weights on individual
densities to change over time include Billio et al. (2013), Waggoner & Zha (2012) and Del Negro
et al. (2016).

This paper contributes to the forecast pooling literature by proposing a new approach. We
show how a nonparametric prior can be imposed on the weights vector to flexibly combine models.
A Dirichlet process prior can be used to allow for countably infinite support of the weights vectors
combining models. Although this generalizes the approach of Geweke & Amisano (2011) to a
Bayesian nonparametric setting our main model adopts the hierarchical Dirichlet process (HDP)
of Teh et al. (2006). This results in the weight vector following an infinite hidden Markov structure.
As such this is very flexible and due to the infinite support for the weight vector we call this class
of forecast pooling models infinite Markov pooling (IMP).

IMP nests the case of one constant vector of weights as in Geweke & Amisano (2011) but allows
for as many states as needed to support the data. By switching between states IMP captures time
variation in model weights through discrete changes. The number of active states can change
over time and sidesteps the problem of estimating the dimension of the Markov chain. States are
allowed to be persistent and a prior on persistence is set through the sticky infinite hidden Markov
model of Fox et al. (2011). IMP can be thought of as an extension to the finite state Markov
switching model combination of Waggoner & Zha (2012).

Estimation of IMP involves two steps. In the first step individual models produce a predictive
likelihood and any additional quantities of interest such as a predictive mean. Following this IMP
take the individual models’ predictive likelihoods as data and uses posterior simulation methods to
estimate and combine these individual models assuming the model probability weights are governed
by an infinite Markov chain. We design a new posterior simulation that jointly samples the latent
state and the model indicator by extending the beam sampler approach Van Gael et al. (2008).
This makes posterior inference on model weights simple and leads to better mixing of the Markov
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chain of the posterior distribution. This two-step approach to estimation means that even though
we use a nonparametric prior a fairly large number of individual models can be pooled together.
The first application pools 20 models.

From the posterior simulation output, a density forecast or other features of the predictive
distribution from the combined model can be computed. For instance, simulated values or quantiles
can be estimated by standard posterior simulation methods that simulate both from the predictive
density of individual models and the predictive density of the IMP specification. These forecasts
take into account all past active states as well as the possibility of new future states.

Infinite Markov pooling is applied to three empirical applications to assess its strengths and
weaknesses. Overall IMP can result in large improvements in the accuracy of density forecasts as
measured by log-predictive likelihoods. We compare to several state-of-the-art model combination
approaches and show that IMP is a dominate competitor for our applications. Point forecasts,
in the form of the predictive mean, show no consistent pattern of improvement over individual
models for any model combination approach.

The first application is to short-term interest rates. Over a range of applications to different
model classes for interest rates the IMP provides the best density forecasts. Using better individual
forecasting models improves all combination methods and we generally recommend including all
reasonable candidates as pooling of 10 and 20 models give the best performing IMP. These results
are robust to subsamples and various prior settings. There is considerable dynamic changes in
weights in contrast to the fixed weights of Geweke & Amisano (2011). On the other hand there is
posterior support for 3–9 different probability weight vectors making a fixed setting of 2 or another
finite number as in Waggoner & Zha (2012) problematic.

The second application is multivariate and forecasts realized covariance matrices. This ap-
plication shows that IMP is useful in higher dimensional settings in this case positive definite
matrices of dimension 10. Most of the model combination approaches we consider improve density
forecasts of realized covariance matrices compared to the individual models. The IMP approach
has a log-Bayes factor of 48 in its favour against the second best performer of Waggoner & Zha
(2012). This is due to the flexibility of the endogenous number of states the nonparametric prior
allows for.

The final application is to predicting monthly returns for ten industry portfolios. Individual
models include popular risk premium specifications with and without GARCH type heteroskedas-
ticity. IMP delivers robust density forecast improvements compared to other combination methods.
Weights from the IMP are more stable compared to the other applications but do display abrupt
changes from time to time.

The paper is organized as follows. The next section reviews existing model combination ap-
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proaches which we include in the empirical applications for comparison. Section 3 considers a
basic Bayesian nonparametric pooling model using a Dirichlet process prior. We discuss how to
extend this to infinite Markov pooling the main new approach we focus on. Posterior sampling
and computation of forecasts are discussed. Section 4 provides a detailed analysis of the methods
to short-term interest rate models. Section 5 applies IMP to realized covariance matrix forecasts
and Section 6 is an application to returns from 10 industry portfolios. Section 7 concludes while
an Appendix contains detailed steps of posterior simulation.

2 Existing Forecast Combination Approaches
In the following we denote the p × 1 vector of interest as yt, the past information set as y1:t =

{y1, . . . , yt} and models as Ml, l = 1, . . . , L. Each of the models will produce a predictive density
for yt given y1:t−1 but they could also exploit additional data x1:t−1 which we suppress to minimize
notation. Next we consider some benchmark density combination approaches followed by our
approach.

2.1 Bayesian Model Averaging (BMA)

Bayesian model averaging (BMA)1 assumes a complete model space, in that one of the set {M1, . . . ,ML}
of models is correct. In this setting the predictive density is formed as

p(yt|y1:t−1) =
L∑
l=1

p(yt|y1:t−1,Ml)p(Ml|y1:t−1), (1)

where p(Ml|y1:t−1) ∝ p(yt−1|y1:t−2,Ml)p(Ml). p(yt|y1:t−1,Ml) =
∫
p(yt|θl,Mj)p(θl|y1:t−1,Ml)dθl is

the predictive likelihood of model Ml and θl is a data density parameter that is integrated out.
As pointed out in Geweke & Amisano (2011) and Del Negro et al. (2016) given a stable data
generating process (DGP) the posterior probability for the model that minimizes the Kullback-
Leibler distance will tend to one as the sample size grows. The remaining forecast combination
approaches do not suffer from this. Extensions to allow for time-varying weights in the context for
BMA have been proposed.2.

1Wright (2008)
2Hoogerheide et al. (2010) suggests an extension, where the weights are allowed to be time-varying by imposing

a random walk on weights dynamics. Billio et al. (2012) uses BMA and apply it to turning point predictions.
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2.2 Static Pooling: Optimal Pooling

Geweke & Amisano (2011) and Hall & Mitchell (2007) proposes a model combination setting which
is incomplete in that the true model is not assumed to belong to the set of candidate forecasting
models. Geweke & Amisano (2011) (GA) optimal prediction pool is obtained by solving for the
weights ω = {ω1, . . . , ωL}, ωl ≥ 0, that

∑L
l=1 ωl = 1 as

max
ω

T∑
t=1

log

(
L∑
l=1

ωlp(yt|y1:t−1,Ml)

)
. (2)

Although static pooling can result in significant improvements in density forecasts, as BMA it does
not capture time-varying dynamics in weights.

Among other static approaches Kascha & Ravazzolo (2010) assign weights by a rule of thumb
while Kapetanios et al. (2015) propose a generalized version by imposing a rolling window as a
threshold. Their work clarifies that combination weights need to be time-varying.

2.3 Dynamic Pooling: Autoregressive Weights

Del Negro et al. (2016) introduces density pooling with time-varying weights. Now weights are
ωt = (ωt,1, . . . , ωt,L) = g(Xt) where g(·) is function that maps the L× 1 stochastic vector Xt to a
discrete probability density of size L, where ωt,l ≥ 0, and

∑L
l=1 ωt,l = 1. A version we consider in

this paper is

Xt,i = (1− ρ)µ+ ρXt−1,i +
√
1− ρ2σϵt,i, ϵt,i

iid∼ N(0, 1), x0,i ∼ N(µ, σ2), i = 1, . . . , L, (3a)

p(yt|y1:t−1, ωt) =
L∑
l=1

ωt,lp(yt|y1:t−1,Ml), ωt,i = exp(Xt,i)/
L∑

j=1

exp(Xt,j). (3b)

In this approach, weights are directed by a set of univariate autoregressions for Xt,i and the
logistic transformation maps this to a probability weight vector. Scalar values of ρ closer to 1
and/or smaller values of σ2 translate into more persistent weights ωt through time. Since this
model is a nonlinear state-space model we follow Del Negro et al. (2016) and sample the weights
by a bootstrap particle filter.

We take (3) as our benchmark and label this model DHS. Updating ρ in the particle filter is
challenging due to expensive computational cost. The magnitude of ρ plays an important role in
determining ωt. A ρ too large restricts the dynamics of ωt and make any structural change in the
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weights unlikely. For these reasons we set ρ = 0.8, µ = 0 and σ = 1.67 in estimation3.

2.4 Dynamic Pooling: Markov Weights:

Instead of the previous weight dynamics, Waggoner & Zha (2012) assume the weights follow a
two-state Markov chain. We label this approach WZ and it takes the form,4

p(yt|y1:t−1,Π, st−1, ω) =
2∑

st=1

πst−1,st

L∑
l=1

ωst,lp(yt|y1:t−1,Ml), st|st−1 ∼ Πst−1 st ∈ {1, 2}, (4)

where Πst−1 denotes the row of the transition matrix Π and governs the probability of the next
state after st−1, while ωst = (ωst,1, . . . , ωst,L). This is a Markov switching model of predictive
densities and allows the model weights ωst to change according to a two state Markov chain. We
assume the prior of ωst ∼ Dir(1, 1). This model can be easily sampled through forward-filter
backward-sampling (FFBS) of Chib (1996).

2.5 Forecast Combination via State-Space Representation

Billio et al. (2013) (BCRV) combine predictors from models allowing for time-varying weights
and model the distribution of observables and predictors using a potentially nonlinear state-space
model.5 The predictor is simulated from its predictive distribution given a model instead of,
for example, relying on the predictive likelihood. The sampling algorithm is based on bootstrap
particle filtering. Billio et al. (2013) introduce an informative prior6 to the particle generating
process. We consider the following version,

Xt,i = ρXt−1,i + σρϵt,i ϵt,i
iid∼ N(0, 1), ωt = g(Xt), (5a)

p(yt|ŷt, ωt) = (2πσ2)−1/2 exp

(
− 1

2σ2

(
yt −

L∑
l=1

ωt,lŷlt

))
, (5b)

ŷt,l ∼ p(ŷt|y1:t−1,Ml) for l = 1, . . . , L, (5c)

3σ = 1.67 results in σ
√
1− ρ2 = 1

4In Waggoner & Zha (2012) the most general specification they consider jointly estimates the Markov switching
process and the parameters of each state specific data density.

5Aastveit et al. (2018) uses the same method for Macroeconomic nowcasting.
6It is an exponentially weighted learning strategy into the weight dynamics for estimating the density of Xt
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where ŷt,l are simulated values from a model’s predictive density and combined in (5b). The
predictive density is formed as

p(yt|y1:t−1) =

∫
p(yt|ŷt)p(ŷt|y1:t−1)dŷt, (6)

where p(yt|ŷt) =
∫
p(yt|ŷt, ωt)p(ωt|y1:t−1)dωt. The last two integrals can be approximated with

Monte Carlo methods and will naturally generate a mixture of distributions for the predictive
density. However, in contrast to the other methods, the mixing occurs through the mean of
(5b) and not the variance. As a result this model can have difficulty in capturing fat tails and
heteroskedasticity over time. The ωt and g(Xt) are defined the same way as DHS in the previous
subsection. We set ρ = 0.8 and σρ = σ = 1 and sample the model weights using the bootstrap
particle filter with pre-simulated ŷ from candidate models.

3 Bayesian Nonparametric Prediction Pooling
To begin consider a simple Bayesian pooling approach for L models

p(yt|y1:t−1, ω) =
L∑
l=1

ωlp(yt|y1:t−1,Ml), ω ∼ H, (7)

where H is the prior distribution for the weights vector. This is a Bayesian analogue of Geweke &
Amisano (2011) with one vector parameter ω to be estimated.7 The predictive density is formed
in the usual way by integrating out parameter uncertainty from the posterior of ω.

There are several Bayesian nonparametric extensions possible. The simplest is to replace the
prior H with a Dirichlet process (DP) prior. This model, in hierarchical form, is

G|α ∼ DP (α,G0), (8a)

ωt
iid∼ G, (8b)

p(yt|y1:t−1, ωt) =
L∑
l=1

ωt,lp(yt|y1:t−1,Ml). (8c)

DP (α,G0) denotes the Dirichlet process prior with precision parameter α > 0 and base distribution
G0. G is an almost surely discrete probability distribution from which each time period the weights

7ω = (ω1, . . . , ωL)
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vector ωt is drawn8. This model is a Dirichlet process mixture (DPM) model (Antoniak 1974).
In large samples parameter uncertainty from the weights vector for these last two models will be
small and posterior will peak around the mode resulting in a predictive density very similar to
Geweke & Amisano (2011) which selects the mode and has fixed probability weights.

3.1 Infinite Markov Pooling

The main nonparametric specification we focus on replaces the DP prior with the hierarchical
Dirichlet process (HDP) of Teh et al. (2006). The resulting model can be thought of as extending
Waggoner & Zha (2012) from a two state to infinite state Markov chain. Although this framework
continues to combine L models, the possible ways of combining models remain unbounded. As
such, it accommodates persistent changes in weights like Del Negro et al. (2016) in addition to
abrupt structural changes. For the latter effect new weight vectors can be introduced through
time as new combinations of models are preferred compared to past combinations. This makes the
approach very flexible.

We refer to this approach as infinite Markov pooling denoted as IMP. The infinite here refers
to the unbounded potential number of weight vectors used to combine the finite L models.9 The
model is

Γ ∼ Stick(η), (10a)

Πi
iid∼ DP

(
α + κ,

αΓ + κδi
α + κ

)
, i = 1, 2, ..., (10b)

st|st−1 ∼ Πst−1 , (10c)

f(yt|It−1, st) =
L∑
l=1

ωst,lp(yt|It−1,Ml) (10d)

ωi ∼Dir
(αω

L
, . . . ,

αω

L

)
, i = 1, 2, ...., (10e)

where ωi = (ωi,1, ωi,2, . . . , ωi,L) is an L vector of model weights corresponding to each state st = i.
8A draw of G can be represented as

G =

∞∑
i=1

πiδωi , ωi
iid∼ G0, i = 1, . . . ,∞

πi = vi

i−1∑
j=1

(1−vj), vj
iid∼ Beta(1, α), j = 1, 2, . . . .

9In practice posterior simulation will explore a finite number of weight vectors for a finite dataset.
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ωst changes over time according to the first-order Markov chain with infinite dimension. Dir(·)
stands for Dirichlet distribution with dimension L. State variable st follows an infinite Markov
transition matrix, Π, with priors governed by a hierarchical Dirichlet process. Πst−1 denotes a row
of the transition matrix given the previous state st−1. This version of the HDP is the sticky version
of Fox et al. (2011) and allows for estimation of state persistence. The term κδi means that to
element αΓi (ith element) is added κ ≥ 0. Through κ state persistence can be reinforced. Larger
values of κ favour self transition of states while κ = 0 gives the standard HDP for infinite hidden
Markov models.

η > 0 and α > 0 are two layers of precision parameters that govern the likelihood of introducing
new states in the HDP. Small values of η and α promote parsimony of states while large values
are consistent with a higher likelihood of new states being introduced.

It can be helpful to view this model as a stick breaking processes (Sethuraman 1994). Let
Γ = {γ1 . . . , γ∞} and πij be the ith row and jth column of Π. The distributional draw Γ ∼ Stick(η)

can be represented as Γ =
∑∞

i=1 γiδi, where δi is a point mass at i and γi is the associated probability
mass that is generated as

γi = vi

i−1∏
l=1

(1− vl), vj
iid∼Beta(1, η), j = 1, 2, .... (11)

Similarly, Πi ∼ DP (α,Γ) can be represented as Πi =
∑∞

j=1 πijδj where the probability weights πij

are generated as

πij = π̂ij

j−1∏
l=1

(1− π̂il), π̂ij
iid∼Beta

(
αγj + κδi, α + κ−

j∑
l=1

(αγl + κδi)

)
, j = 1, 2, .... (12)

Each row Πi of the transition matrix is centered on Γ in that E(πij) = Γi and Var(πij) = Γi(1 −
Γi)/(1+α). As the magnitude of η and α increase the probability mass is dispersed among a greater
number of states. Due to the importance of these parameters we place the following priors on them
and learn their values from the data, η ∼ Gamma(c0, c1), α+κ ∼ Gamma(c2, c3), ρ ∼ Beta(c4, c5)

with ρ = α/(α+κ) which is easier to sample. We set a hyper-prior on αω as αω ∼ Gamma(c6, c7).
Setting a hyper-prior on αω makes sampling the posterior of ωk within each state group more
flexible than a fixed αω.
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After marginalizing over st, the predictive density of yt given st−1 is determined by

p(yt|y1:t−1, st−1) =
∞∑

st=1

πst−1stp(yt|y1:t−1, st) =
∞∑

st=1

πst−1st

L∑
l=1

ωst,lp(yt|y1:t−1,Ml) (13a)

where p(yt|y1:t−1,Ml) is the predictive density at time t of the individual model Ml.

3.2 Posterior Sampling

To facilitate sampling, we introduce an indicator variable zt ∈ {1, 2, . . . , L}, indexing the model
assigned to observation t. We jointly sample the state variable st and model variable zt. Our
mechanism for sampling z1:T is an important contribution and jointly sampling (st, zt) makes
posterior inference on model weights simple and leads to better mixing of the Markov chain of the
posterior distribution.

We extend the beam sampler approach Van Gael et al. (2008) to sample the state space
(s1:T , z1:T ). This introduces auxiliary variables that stochastically truncate the infinite state space
to a finite space after which a FFBS can be used to sample states. Marginalizing over the auxiliary
variables gives the desired posterior distribution.

Define the auxiliary latent variable ut > 0 (slices) with the following uniform density:

p(ut|st, st−1, zt,Π, ω) =
1(ut < πst−1,stωst,zt)

πst−1,stωst,zt

. (14)

Define the natural number K such that the set {st|st < K} contains all instances of ut <

πst−1,stωst,zt for each t. Inclusivity is guaranteed if K satisfies maxi∈{1,...,K}{1 −
∑K

j=1 πi,j} <

mint∈{1,...,T}{ut}. With this, the infinite outer summation in (13a) is reduced to at most K

non-zero terms and variables st and zt can be sampled jointly in the following way. Define
ω = (ω1, . . . ..., ωK), and each of its element as ωj = (ωj,1, . . . , ωj,L) for j = 1, . . . , K then iter-
ate over the following steps. From t = 1, . . . , T , repeat the following forward filter steps:

Prediction step: for k = 1, . . . , K, l = 1, . . . , L calculate

p(st = k, zt = q|u1:T ,Π, ω, y1:t−1)

∝
K∑
j=1

L∑
l=1

1(ut < πj,kωk,q)p(st−1 = j, zt−1 = l|u1:T ,Π, ω, y1:t−1).
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Update step: for k = 1, . . . , K, l = 1, . . . , L calculate

p(st = k, zt = q|u1:T ,Π, ω, y1:t)

∝ p(st = k, zt = q|u1:T ,Π, ω, y1:t−1)p(yt|y1:t−1,Mq).

Followed by the backward sampling steps.

1. Sample (sT , zT ) from p(sT , zT |u1:T ,Π, ω, y1:T ).

2. Sample (st, zt) from p(st, zt|u1:T ,Π, ω, y1:t)1(ut+1 < πst,st+1ωst+1,zt+1) for t = T − 1, . . . , 1.

After states (indexed by st) are sampled we track the number of active states (visited at least
once) and order them as the initial K states and accordingly sort ω1:K and Π1:K+1,1:K+1. Each
sweep of the sampler updates the value of K. {u1:T , s1:T , z1:T , η, α, αω,Γ1:K ,Π1:K+1,1:K+1, ω1:K , K}
is the parameter set. Posterior sampling is sequentially repeated from the following conditional
posterior distributions:

p(u1:T |s1:T , z1:T ,Π1:K+1,1:K+1, ω1:K) p(s1:T , z1:T |Π1:K+1,1:K+1, ω1:K , u1:T , y1:T )

p(ω1:K |z1:T , s1:T , αω) p(Π1:K+1,1:K+1|s1:T ,Γ1:K , α)

p(Γ1:K |s1:T , η, α) p(η, α, ρ, κ|s1:T ,Γ1:K)

p(αω|ω1:K).

Each of these steps are detailed in the Appendix.
Iterating the above steps produces posterior draws for each parameter of interest. With 20,000

burn-in draws, the posterior average of each parameter and predictive density are computed from
40,000 draws following burn-in. A parameter of interested is ωst as it indicates the model pooling
dynamics at time t. We estimate the posterior mean as

E(ωst |y1:T ) ≈
1

N

N∑
i=1

ω
(i)

st(i)
, for t = 1, . . . , T, (16)

where i indicates the ith MCMC draw of the associated parameter and ωst = {ωst,1, . . . , ωst,L}.
Any posterior statistic of interest can be computed in a similar way.
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3.3 Predictive Density

Given data y1:T and N MCMC draws of parameters the predictive density can be estimated directly
or simulated from. To compute the predictive density and predictive likelihood we do the following
steps.

1. For each MCMC draw of sT , simulate the future state sT+1 according to the Markov transition
probability ΠsT .

2. If sT+1 ≤ K, set ωsT+1
from the existing draws of ω1:K . Otherwise, set sT+1 as a new state

generated from the prior ωsT+1
∼ Dir(αω

L
, . . . , αω

L
).

The predictive density can be estimated as

p(yT+1|y1:T ) ≈
1

N

N∑
i=1

L∑
l=1

ω
(i)

s
(i)
T+1,l

p(yT+1|y1:T ,Ml), (17)

which integrates out parameter and distributional uncertainty. A predictive likelihood value is
obtained by evaluating (17) at the realized data yT+1. Similarly, predictive moments can be
estimated such as the predictive mean,

E(yT+1|y1:T ) ≈
1

N

N∑
i=1

L∑
l=1

ω
(i)

s
(i)
T+1,l

E(yT+1|y1:T ,Ml), (18)

where E(yT+1|y1:T ,Ml) is the predictive mean from model Ml.
To evaluate predictive accuracy over the the out-of-sample (OOS) period t = τ1, . . . , τ2, τ1 ≤ τ2,

we report the log-predictive likelihood (LPL) and root mean squared forecast errors (RMSFE) as
follows:

LPL =

τ2∑
t=τ1

log p(yt|y1:t−1), RMSFE =

√∑τ2
t=τ1

(E(yt|y1:t−1)− yt)2

τ2 − τ1 + 1

Calculating these measures involves recursively estimating the model for each time period in the
out-of-sample period.

3.4 Training Sample

The training sample is a bit more complicated than in a conventional setting. There are two layers
of training sample and out-of-sample periods need to be clarified. Each individual model requires
a history of data for estimation as does the pooling models. Each individual model is assumed to
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use all data from t = 1 to t− 1 to compute a predictive likelihood for yt. The pooling models will
use data from τ0 ≥ 1 to t− 1 to compute a predictive density for yt. In general, a τ0 of 1 could be
used but larger values are desirable as initial predictive likelihoods will be dominated by parameter
uncertainty and the pooling model using these data to learn may degrade its forecasts. Therefore,
in the applications a τ0 > 1 is generally used and robustness to this parameter is presented.
In summary, as above we compare forecasts for all models over a common out-of-sample period
yτ1 , . . . , yτ2 . Individual models use data from t = 1 and onward to compute a forecast while pooling
models use data from t = τ0 onward.

4 Application to U.S. Short-term Interest Rate Models
There is an extensive literature devoted to the time-series dynamics of short-term T-bill rates.
This section will investigate four groups of models to forecast interest rates using different model
combination approaches.

4.1 Models

4.1.1 Basic Models

The following general form summarizes the basic group:

rt − rt−1 = λ+ βrt−1 + et et ∼ N(0, σ2rxt−1), (19)

where rt is the short-term interest rate. The conditional variance is σ2r2xt−1. The first model is
Vasicek (1977) and specified as x = 0 (VSK). The second model is Cox et al. (1985), wherein
x = 1 (CIR). The next model is from Black & Scholes (1973) with the only restriction of x = 2

(GBM). The fourth model is denoted as MER introduced by Merton (1973), which sets β = 0 and
x = 0. The last model is introduced by Brennan & Schwartz (1977), Brennan & Schwartz (1979)
and Brennan & Schwartz (1980). It is denoted as GBM and it is restricted by λ = 0 and x = 2.
These five models are defined as the basic group.

4.1.2 MS2 Models

Markov switching models have been a popular specification for interest rates (Ang & Bekaert 2002,
Durham 2003, Pesaran et al. 2006, Guidolin & Timmermann 2009). The MS2 group contains five
models and are direct extensions to the previous group with λ, β and σ becoming state dependent.
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These are

rt − rt−1 = λst + βstrt−1+et et ∼ N(0, σ2
str

x
t−1) (20a)

st ∈ (1, 2) st|st−1 ∼ Π. (20b)

VSK-MS2, CIR-MS2 and BSZ-MS2 correspond to x = 0, x = 1 and x = 2. GBM-MS2 which
imposes λ1:2 = 0 and x = 2 of above equation. MER-MS2 takes the constraints of β1:2 = 0 and
x = 0. These five models are denoted as the five models in MS2 group.

4.1.3 IHMM Models

The IHMM group contains five models which like the MS2 extend the benchmark set of models
to be governed by a unobserved discrete state but in this case the state follows an infinite Markov
chain. These models are motivated from Maheu & Yang (2016) who use them to nonparametrically
model interest rate dynamics. The five models of IHMM group are defined by,

Γ ∼ Stick(η), Πi ∼ DP (α,Γ) , i = 1, 2, ..., (21a)
rt − rt−1 = λst + βstrt−1 + et et ∼ N(0, σ2

str
x
t−1) (21b)

st|st−1 ∼ Πst−1 , st ∈ {1, 2, . . . , } (21c)

The models of IHMM group allows the λ, β and σ to change through a infinite Markov transition
probability.

We denote VSK-IHMM, CIR-IHMM and BSZ-IHMM by letting x = 0, x = 1 and x = 2 in
(21). GBM-IHMM which imposes λ1:∞ = 0 and x = 2 of above equation. MER-IHMM takes the
constraints of β1:∞ = 0 and x = 0.

4.1.4 GARCHt Group

Motivated by the importance of volatility dynamics (Durham 2003) in interest rates, this group
extends the basic models with a GARCH conditional variance with the Student-t error component.
The five models in the GARCHt group are summarized through,

rt − rt−1 = λ+ βrt−1+et et ∼ St(0, σ2
t r

x
t−1, ν) (22a)

σt = α0 + α1e2t−1+α2σ
2
t−1 (22b)
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where St(0, σ2
t r

x
t−1, ν) denotes a Student-t density with mean 0 and variance σ2

t r
x
t−1ν/(ν − 2) for

ν > 2. VSK-GARCHt, CIR-GARCHt and BSZ-GARCHt correspond to x = 0, x = 1 and x = 2

of (22). GBM-GARCHt imposes λ = 0 and x = 2 while MER-GARCHt has β1 = 0 and x = 0.

4.1.5 Priors

For individual models of Basic, MS2, IHMM and GARCHt groups, the prior for λ and β are
independent standard normal. Let σ ∼ Gamma(5, 1). Additionally, each row of Π in the MS2
group follows a Dirichlet distribution with a vector of one. An independent N(0, 100) applies to
α0, α1 and α2 with the restrictions α0 > 0, α1 ≥ 0, α2 ≥ 0, ν ∼ U(2, 100) in the GARCHt models.

In terms of pooling, we set the following hyper-prior on infinite Markov pooling (IMP),

η ∼ Gamma(3, 1), α + κ ∼ Gamma(2, 1), ρ ∼ Beta(3, 1)

We sample α and κ together and let ρ = κ
α+κ

. Finally, αω ∼ Gamma(4, 1). These prior settings for
IMP are used in the three empirical examples unless otherwise stated. The priors for alternative
forecast combination methods are referred to in Section 2.

4.2 Data

Data are monthly three-month treasury bill rates from the secondary market (T-Bill rate) and
downloaded from Federal Reserves at St.Louis10. The 1,033 observations span January 1934 to
January 2020. Figure 1 shows the time-series of T-Bill rates. The upper panel illustrates that T-
Bill rates peaked during the 1980s and remained near zero for almost 10 years after 2008 making
this a challenging dataset for any model to capture. The bottom panel shows the first difference
of T-Bill rates.

4.3 Posterior Analysis

Figure 2 displays the posterior average of weight allocations, E[ωst |y1:T ], in pooling the different
groups of models: Basic, MS2, IHMM and GARCHt. There is strong evidence of changing weights
across all model groups. Several models jointly a play significant role within each group.

For the Basic group, the CIR is the top model based on weight across periods and this tends
to extend to the MS2 models as well. However, in the IHMM class the the IHMM-MER captures
more weight. In the GARCHt group the MER-GARCHt has the dominate weight over time.

10https://fred.stlouisfed.org/series/TB3MS
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IMP allows for as many weight vectors as needed. As discussed before if there was one weight
vector this corresponds to the Geweke & Amisano (2011) optimal prediction pool. Figure 3 shows
the posterior of unique states or weight vectors. Most of the mass is from 3 to 9 regimes. It is
switches between these different weight vectors that result in a time-varying weight for a specific
model as seen in Figure 2.

4.4 Out-of-Sample Forecasts

Forecasts are computed from τ1 = 21 to τ2 = T = 1033 with τ0 = 10 giving a total of 1013
out-of-sample periods from September-1935 to January-2020. Forecasts are computed recursively
over the out-of-sample period and as each new observation arrives each prediction pooling model
is fully re-estimated to compute the next forecast. Cumulative log-predictive likelihood (LPL)
and RMSFE are reported in Table 1. Each section of the table reports forecast results for each
individual model of a group in addition to various model combination approaches. The final panel
of the table pools over several groups of models using the IMP approach.

With the exception of the GARCHt group the CIR specification achieves the largest LPL value
in each of the other groups. Sometimes model pooling approaches beat the CIR specification and
other time not. Only the IMP approach consistently produces the largest LPL value in each group
and overall. Figure 4 displays cumulative log-Bayes factors of the individual models in a group
against the IMP of those models. In some periods the IMP makes large gains while in others they
are minor indicating similar forecast quality. Among the different groups the largest LPL value is
from the IMP over the GARCHt specifications with a value of 587.1.

The final panel of Table 1 considers pooling over the different groups: basic, MS2, IHMM and
GARCHt. Two additional entries are reported. IMP-20 pools over all 20 individual models while
IMP-10 pools over the 10 models in the groups IHMM and GARCHt. Both of these larger pools
increase the LPL by over 10 making them strongly favoured over the other pools. The IMP-10 has
the largest value and a log-Bayes factor of 17.9 against the IMP of the GARCHt models. These
results seem to indicate that pooling over more models is desirable but which class to pool over
can influence results. The IMP approach produces the smallest RMSFE but the improvement over
other models and pooling methods is small.

Figure 5 plots the aggregated weights associated with the basic, MS2, IHMM and GARCHt
groups used in the IMP-20 model. For instance, the aggregate weight of the MS2 group is the sum
of the weights assigned by IMP to VSK-MS2, CIR-MS2, BSZ-MS2, GBM-MS2 and MER-MS2
models. The IHMM and GARCHt group of models are the major contributors to the pooling
model but their relative contributions changes over time.
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4.5 Robustness

Table 2 displays forecast results for various subsamples for all forecast combination methods using
the IHMM and GARCHt model groups. IMP generally dominates in these subsamples and when
it does not it is very close to the best model in terms of LPL. As before there are only minor
differences in RMSFE results.

Next we consider the sensitivity of results to the value of τ0 with τ1 and τ2 fixed. Recall that
the conditioning data or training sample before the first forecast is τ1 − 1 − (τ0 − 1) = τ1 − τ0.
Table 3 report forecast results for the IMP approach for IHMM and GARCHt group models. Each
column shows forecast results for different training samples. For pooling over the IHMM models a
larger training sample improves LPL values as more data aids learning about the nonparametric
structure of the IHMM. The IMP of GARCHt models shows the training sample size has no impact
on forecast results.

Finally, Table 4 displays forecast results for the IMP-20 pooling specification with different
prior settings for α, η and ρ which govern states dynamics and the active state dimension. The
base prior used in estimation is a1 = 2, b = 1, a2 = 3, b2 = 1, a3 = 3, b3 = 1 with a LPL value of
598.2 and RMSFE of 0.3638 In general the results are insensitive to different prior settings for the
IMP-20 specification.

5 Realized Covariance (RCOV) Models Application
The next application is multivariate in this case 10 dimensional realized covariance (RCOV) ma-
trices. This means there are 55 unique elements to forecast at each time period.

5.1 Models

Let Σt, t = 1, . . . , T denote a realized covariance matrix of dimension k and Σ1:t−1 = {Σ1, . . . ,Σt−1}.
Even though the object of interest is a matrix, forecast pooling methods can be applied to any
model that produces a predictive density of a quantity of interest. In this application, we will pool
five popular RCOV models which are introduced in last decade.

The first model is from Jin & Maheu (2013) and named as additive component Wishart model
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(W) in the following way,

Σt|Σ1:t−1 ∼ Wishartk(ν, Vt/ν),

Vt = B0+
M∑
j=1

Bj ⊙ Γt−1,ℓj Γt−1,ℓ =
1

ℓ

ℓ∑
i=1

Σt−i,

with three (M = 3) components. Wishartk(ν, 1
ν
Vt) denotes a Wishart distribution over positive

definite matrices of dimension k with ν degrees of freedom and scale matrix 1
ν
Vt. ⊙ denotes

the element-by-element (Hadamard) product of two matrices. B0 is a k × k symmetric positive-
definite matrix, and Bj = bjbj where bj’s are k×1 vectors making each Bj rank 1. Γt−1,ℓj is the jth

(additive) component defined as the average of past Σt over ℓj observations. The first component
has one lag, ℓ1 = 1, while ℓ2 and ℓ3 are estimated which can lead to significantly better forecasts
than assigning preset values. In our Bayesian inference, the priors on the elements of bj’s are all
N(0, 100), except the first element of each bj is truncated to be positive for identification purposes,
and ν ∼ exp(100)Iν>k−1, an exponential distribution with support truncated to be greater than
k − 1. The prior for ℓ2, ℓ3 are uniform discrete over {2, . . . . , 200} with ℓ2 < ℓ3. See Jin & Maheu
(2013) for full details on estimation.

The next specification replaces the Wishart with an inverse-Wishart distribution. This additive
component inverse-Wishart model (IW) is from Jin & Maheu (2016) and follows,

Σt|Σ1:t−1 ∼ invWishartk(ν, (ν − k − 1)Vt)

Vt =B0 +
M∑
j=1

Bj ⊙ Γt−1,ℓj Γt−1,ℓ =
1

ℓ

ℓ∑
i=1

Σt−i.

invWishartk(ν, (ν−k−1)Vt) denotes an inverse-Wishart distribution over positive definite matrices
of dimension k with ν degrees of freedom and scale matrix (ν−k−1)Vt. The rest of the specification
is the same as the previous model and the parameters are given the same priors. See Jin & Maheu
(2016) for estimation details.

The third model is the generalized conditional autoregressive Wishart model (GCAW) of Yu
et al. (2017) .

Σt|Σ1:t−1 ∼ NCWk(ν, Vt/ν,Λt), Λt =
r∑

i=1

MiΣt−iM
′
i

Vt = CC ′ +

p∑
i=1

BiVt−iB
′
i +

q∑
i=1

AiΣt−iA
′
i.
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NCWk(ν, Vt/ν,Λt) is a noncentral Wishart distribution over positive definite matrices of dimension
k. ν is the real-valued degree of freedom and ν > k − 1. Vt/ν and Λt are the scale matrix and
the noncentrality matrix, respectively, both of which are symmetric positive definite. C is a k× k

lower triangular matrix and Ai, Bi,Mi are k×k. Following the results in GCAW we use their best
model with p = 2, q = 2, r = 1. For inference, independent N(0, 100) are assigned as priors to all
elements of C,Ai, Bi,Mi except the (1, 1)th element of each matrix, which use positively truncated
N(0, 100) for identification and ν ∼ exp(100)Iν>k−1. Posterior simulation for this model and the
next is conducted with a Metropolis-Hastings step that jointly samples the full parameter vector
from a random walk proposal.

The fourth model is the conditional autoregressive Wishart (CAW) model of Golosnoy et al.
(2012) and specifies

Σt|Σ1:t−1 ∼ Wishartk(ν, Vt/ν)

Vt = CC ′ +

p∑
i=1

BiVt−iB
′
i +

q∑
i=1

AiΣt−iA
′
i.

ν is the real-valued degree of freedom and ν > k− 1. Vt/ν is the scale matrix, which is symmetric
positive definite. C is a k×k lower triangular matrix and Ai, Bi,Mi are k×k. Since CAW is nested
within GCAW, we use the same prior distributions for common parameters of the two models. In
the application p = q = 2.

The last model is based on the matrix discounting model (West & Harrison 1997) adapted by
Jin et al. (2019) to model RCOV matrices.

Σt|Σ1:t−1 ∼ invWishartk(βnt + k − 1, βntSt)

nt = βnt−1 + 1 St =
1

nt

(βnt−1St−1 + Σt−1)

RCOV is assumed to follow a fully specified inverse-Wishart distribution with β = 0.95 the discount
factor reflecting the decay of information from t− 1 to t.

5.2 Data

The 10-asset daily RCOV data is from Noureldin et al. (2012).11 The list of stocks used are:
Alcoa (AA), American Express (AXP), Bank of America (BAC), Coca Cola (KO), Du Pont (DD),
General Electric (GE), International Business Machines (IBM), JP Morgan (JPM), Microsoft

11http://realized.oxford-man.ox.ac.uk/data/download
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(MSFT), and Exxon Mobil (XOM). The data ranges from 2001/02/01 to 2009/12/31 (2092 obs).
Here τ0 = 1400, τ1 = 1550 and τ2 = T = 2092. As a result, a total of 693 periods of predictive
likelihoods are produced from candidate models, and 543 (2007/11/06 to 2009/12/31) periods of
predictive likelihoods are computed for pooling models.

5.3 Forecast Performance and Weight Dynamics

The computation of the log-predictive likelihood (LPL) on each of the forecast combination meth-
ods and individual RCOV models is the same as in the interest rate application. The root mean
squared forecast error is computed as,

RMSFEA =

√∑τ2
t=τ1

∑k
i=1

∑k
j=1(Σt,ij − E[Σt,ij|Σ1:t−1, A])2

τ2 − τ1 + 1

where Σt,ij is element i, j of Σt and the associated predictive mean, E[Σt,ij|Σ1:t−1, A] for model A,
and k = 10.

Table 5 shows the forecast performance of each RCOV model as well as all combination ap-
proaches.12 According to the LPL values and among individual models the additive component
inverse-Wishart (IW) performs the best and has log-Bayes factor of more than 8600 over the sec-
ond best model, the conditional autoregressive Wishart (CAW) specification. The discounting
model is very poor relative to the other alternatives. The last row reports results for the model
combinations. Except for BMA all pooling methods improve upon the IW model with the IMP
having the largest value. The IMP has a log-Bayes factor of 58 over WZ, the second best pooling
model. Turning to point forecasts the CAW performs the best and consistently beats all forecast
combination approaches.

Consistent with individual model performance the IW receives a large weight in the IMP as
shown in Figure 6. Although the discounting model is uniformly the worse model based on forecast
statistics it captures a substantial share of weight in many periods. The discounting model weight
increases exactly when the weight on the IW model declines. This illustrates the importance of
including even poor forecasting models in pooling approaches. The GCAW has a small weight over
the whole out-of-sample time and seems to be dominated by the CAW.

A full sample analysis reveals that the posterior mean of active states in the IMP specification
is 7.65 with a 0.95 density interval of (5, 11).

12The BCRV approach was excluded as its present form was not designed for combining matrix forecasts without
further assumptions.
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In summary, the IMP approach produces superior density forecasts but is not as competitive
for point forecasts as several individual models.

6 Fama-French and Q-factor Models
The Fama-French 5 factor model (FF) of Fama & French (2015) and the Q-factor model of Hou
et al. (2015) are two prominent models used to explain the pricing of risky assets. In this appli-
cation, we use the two asset pricing models to forecast returns using the 10 industry portfolios
from the Kenneth R. French data library13 which include the FF factors while the Q-factor data
is obtained separately.14 The data are monthly value-weighted returns, from January 1967 to Dec
2019 (636 observations). In the following we set τ0 = 10, τ1 = 61 and τ2 = T = 636 leaving 576
out-of-sample observations. Although homoskedastic and heteroskedastic versions are considered
the main feature distinguishing the models is the factors included in the conditional mean.

6.1 Models and Data

The following model is the 5-factor (FF) version by Fama & French (2015) which postulates excess
returns follow:

rt − rft = α + β1f1t + β2f2t + β3f3t + β4f4t + β5f5t + et et ∼ N(0, σ2). (28)

The Q-factor (Qf) model of Hou et al. (2015), Hou et al. (forthcoming) is the following,

rt − rft = α + β1q1t + β2q2t + β3q3t + β4q4t + β5q5t + et et ∼ N(0, σ2). (29)

Here rt denotes the portfolio return and rft is the risk free rate. The factors f1t, . . . , f5t are
excess market returns, return difference between diversified small & big stocks, robust & weak
profitability firm, low & high investment firms, and high & low Book to Market (B/M) firms,
respectively. Let q1t, . . . , q5t denote market excess returns, size factor returns, investment factor
returns, equity factor returns and expected growth returns, respectively.

The original models of Fama & French (2015) and Hou et al. (2015) are homoskedastic mod-
els which did not consider volatility dynamics. To improve density forecasts we introduce het-

13https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html.
14http://global-q.org/factors.html
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eroskedastic versions of (28) and (29) by replacing the σ2 with σ2
t in the following GARCH model,

σ2
t = ω0 + ω1e

2
t−1 + ω2σ

2
t−1. (30)

The GARCH version of the models are denoted as FF-GARCH and Qf-GARCH.
We set the priors of α, β1, . . . , β5 to follow independent standard normal distributions and

assume σ−2 ∼ Gamma(3, 1). Priors for ω0, ω1 and ω2 are independent N(0, 100) with ω0 > 0,
ω1 ≤ 0, ω2 ≤ 0 and ω1 + ω2 < 1.

6.2 Results

The posterior mean of the weights from the IMP model are displayed in Figures 7 and 8. A
model with GARCH generally receives the largest weight but the homoskedastic versions receive
significant weighs also. With the exception of the Durable portfolio the time-varying nature of the
weights is clear.

Table 6 reports the out-of-sample forecast performance for the four individual models as well
as combination approaches. In five cases the IMP method has the largest LPL value and in two
other cases is has essentially the same value as the top performing model (Durbl and Healt). Only
in the case of Other portfolio is the evidence strongly against the IMP with a log-Bayes factor of
5.5 in favour of the FF-GARCH. The picture is different for point forecasts. Only in one portfolio
does the IMP method have the lowest RMSFE. There is no dominate model for point forecasts.
The best is the BCRV but the differences amongst models is relatively small.

Overall in terms of density forecasts the IMP approach is very competitive compared to in-
dividual models and other combination methods. Point forecast accuracy is very similar among
models and no one specification consistently provides the lowest values.

7 Conclusion
This paper introduces a new approach to forecast pooling methods based on a nonparametric prior
for the weight vector combining predictive densities. A hierarchical Dirichlet process prior allows
the weight vector on a set of models to follow an infinite hidden Markov chain. This generalizes
dynamic prediction pools to the nonparametric setting. We discuss efficient posterior simulation
based on MCMC methods. Detailed applications to short-term interest rates, realized covariance
matrices and asset pricing models show the nonparametric pool forecasts well.
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Table 1: Out-of-sample Forecast Performance of Individual Models and Pooling Approaches

Basic Group
VSK CIR GBM MER BSZ

-426.1 204.2 -708.3 -423.3 -653.6
(0.3668) (0.3660) (0.3829) (0.3642) (0.3644)

Model Pooling on Basic Group
BMA GA DHS WZ BCRV IMP

196.1 251.1 202.5 276.0 134.9 330.4
(0.3660) (0.3660) (0.3662) (0.3671) (0.3665) (0.3660)

MS2 Group
VSK-MS2 CIR-MS2 GBM-MS2 MER-MS2 BSZ-MS2

-43.2 280.8 -330.8 -121.6 -325.0
(0.3600) (0.3660) (0.3711) (0.3664) (0.3676)

Model Pooling on MS2 Group
BMA GA DHS WZ BCRV IMP

272.6 263.5 201.6 286.1 131.4 330.8
(0.3659) (0.3643) (0.3634) (0.3623) (0.3641) (0.3628)

IHMM Group
VSK-IHMM CIR-IHMM GBM-IHMM MER-IHMM BSZ-IHMM

252.6 381.8 257.6 268.4 243.4
(0.3599) (0.3632) (0.3696) (0.3648) (0.3694)

Model Pooling on IHMM Group
BMA GA DHS WZ BCRV IMP

373.6 403.3 431.9 464.4 401.6 481.7
(0.3633) (0.3625) (0.3629) (0.3618) (0.3631) (0.3612)

GARCHt Group
VSK-GARCHt CIR-GARCHt GBM-GARCHt MER-GARCHt BSZ-GARCHt

488.6 526.7 269.5 528.3 215.1
(0.3729) (0.3698) (0.3759) (0.3641) (0.3664)

Model Pooling on GARCHt Group
BMA GA DHS WZ BCRV IMP

524.6 569.1 567.5 570.4 522.2 587.1
(0.3658) (0.3659) (0.3686) (0.3662) (0.3691) (0.3658)

Pooling Over Many Groups
IMP-20 IMP-10 IMP-IHMM IMP-GARCHt

598.2 605.0 481.7 587.1
(0.3638) (0.3642) (0.3612) 0.3658

Log-predictive likelihood (LPL) and root mean squared forecast errors (RMSFE) in parentheses for individual
models and combination methods for the out-of-sample period 1935-09 to 2020-01 (1013 periods). Bold values
denote the maximum LPL value and minimum RMSFE in a panel.
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Table 2: Subsample Analysis on IHMM and GARCHt Group

1935-Sep to 1962-June
BMA GA DHS WZ BCRV IMP

IHMM
264.0

(0.1542)
278.3

(0.1508)
286.7

(0.1496)
288.8

(0.1474)
274.2

(0.1497)
306.0

(0.1490)

GARCHt
380.3

(0.1515)
392.1

(0.1510)
399.3

(0.1516)
394.5

(0.1511)
365.2

(0.1519)
408.3

(0.1515)

1962-July to 1990-Jan
BMA GA DHS WZ BCRV IMP

IHMM
-163.3

(0.5880)
-150.2

(0.5908)
-136.0

(0.5915)
-126.0

(0.5917)
-143.3

(0.5915)
-125.1
(0.5907)

GARCHt
-126.5

(0.5935)
-116.5
(0.5935)

-121.9
(0.5976)

-116.5
(0.5938)

-127.8
(0.5982)

-116.7
(0.5934)

1990-Feb to 2020-Jan
BMA GA DHS WZ BCRV IMP

IHMM
273.0

(0.1799)
275.2

(0.1691)
281.2

(0.1700)
301.6

(0.1640)
270.7

(0.1708)
300.8

(0.1631)

GARCHt
270.7

(0.1786)
293.5

(0.1805)
290.0

(0.1828)
292.4

(0.1807)
284.7

(0.1836)
295.5

(0.1786)
This table illustrates out-of-sample log-predictive likelihood (LPL) and root mean squared forecast errors
(RMSFE) (within bracket) in subsample cases for pooling five-benchmark.

Table 3: Training Sample Sensitivity for IMP Forecasts

Training sample size (τ1 − τ0)
10 20 50 80 110

IHMM
232.9

(0.3938)
234.0

(0.3934)
236.3

(0.3941)
236.9

(0.3939)
237.1

(0.3937)

GARCHt
244.2

(0.3996)
244.2

(0.3994)
244.4

(0.3991)
244.0

(0.3986)
244.4

(0.3985)
This table illustrates out-of-sample log-predictive likelihood (LPL) and root mean squared forecast errors
(RMSFE) (within bracket) for IMP with IHMM and GARCHt groups for various training sample sizes
τ1 − τ0 by varying τ0 and fixing τ1 = 83 and τ2 = T . The out-of-sample period t = τ1, . . . , T is common
to each column and spans 1949-April to 2020-January (850 Observations).
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Table 4: Hyper-Prior Sensitivity Testing on IMP-20

a1 = 1, b1 = 1
a2 = 1, b2 = 1

a1 = 3, b1 = 1
a2 = 3, b2 = 1

a1 = 6, b1 = 1
a2 = 6, b2 = 1

a3 = 5, b3 = 1
596.8

(0.3640)
598.6

(0.3638)
597.9.9
(0.3638)

a3 = 1, b3 = 1
598.9

(0.3640)
601.0

(0.3638)
598.0

(0.3640)

a3 = 1, b3 = 2
594.8

(0.3639)
598.0

(0.3640)
597.7

(0.3638)
This table illustrates out-of-sample log-predictive likelihood (LPL) and root mean squared forecast
errors (RMSFE) (within bracket) with respect to various hyper-priors combinations. α+ κ ∼ G(a1, b1),
η ∼ G(a2, b2) and ρ ∼ B(a3, b3)

Table 5: RCOV: Model Forecasts

Individiual RCOV Models

W IW CAW GCAW Dis
-45941 -36962 -45600 -45612 -60712

(74.8323) (76.4418) (72.4369) (72.1216) (83.8508)

Model Pooling

BMA GA DHS WZ IMP
-36962 -35037 -35070 -34964 -34916

(76.4418) (73.7681) (73.1618) (76.2534) (74.8056)
This table reports the log-predictive likelihood and root mean squared forecast errors in parentheses ()
for individual models and model pooling methods for 543 (2007/11/06 to 2009/12/31) out-of-sample
observations.
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Figure 1: T-Bill Interest Rates (Top) and Changes in Rates (Bottom)
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The top panel is rt and the bottom panel is the change (rt − rt−1).
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Figure 2: Posterior Average of Infinite Markov Pooling Weights
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This figure shows the posterior average of ω of infinite Markov pooling (IMP) for each group. Each color represents
the indicated type of model.
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Figure 3: Posterior Number of Active States
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These histograms show the number of active states for Infinite Markov Pooling model.

32



Fi
gu

re
4:

C
um

ul
at

iv
e

lo
g-

Ba
ye

s
Fa

ct
or

s
of

IM
P

v.
s.

A
lte

rn
at

iv
e

Fo
re

ca
st

C
om

bi
na

tio
n

A
pp

ro
ac

he
s

050100150200

In
de

x

B
M

A
G

A
D

H
S

W
Z

B
C

R
V

19
35

09
19

49
09

19
63

10
19

77
11

19
91

11
20

05
12

20
20

01

B
as

ic
 G

ro
up

050100150200

In
de

x

imp_lpl − bma_lpl

B
M

A
G

A
D

H
S

W
Z

B
C

R
V

19
35

09
19

49
09

19
63

10
19

77
11

19
91

11
20

05
12

20
20

01

M
S

2 
G

ro
up

020406080100120

B
M

A
G

A
D

H
S

W
Z

B
C

R
V

19
35

09
19

49
09

19
63

10
19

77
11

19
91

11
20

05
12

20
20

01

IH
M

M
 G

ro
up

020406080

imp_lpl − bma_lpl

B
M

A
G

A
D

H
S

W
Z

B
C

R
V

19
35

09
19

49
09

19
63

10
19

77
11

19
91

11
20

05
12

20
20

01

G
A

R
C

H
t G

ro
up

C
um

ul
at

iv
e

lo
g-

Ba
ye

s
fa

ct
or

s
of

ab
ov

e
co

m
bi

na
tio

n
m

et
ho

ds
ov

er
th

e
ou

t-
of

-s
am

pl
e

pe
rio

d
19

35
-0

9
to

20
20

-0
1

(1
01

3
pe

rio
ds

).

33



Figure 5: Posterior Average Aggregate Weights for Model Groups
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This figure shows the posterior average aggregate of ω over each group entering the infinite Markov pooling (IMP)
for all four groups (20 total models) altogether.

Figure 6: RCOV: Posterior Mean of Weights from Infinite Markov Pooling
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This table shows the posterior average of ω1:T from pooling the five RCOV models. Each color represents the
associated weight given to the indicated model.
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Figure 7: Posterior Average of Weights for IMP on 10 Portfolios
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This figure displays the posterior average weights from the IMP specification for 5 of the 10 portfolios. Combined
individual models are: Fama and French (FF) 5-factor model, Q-factor (Qf) model and GARCH extensions (FF-
GARCH, Qf-GARCH).
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Figure 8: Posterior Average Weights for IMP on 10 Portfolios
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This figure displays the posterior average weights from the IMP specification for 5 of the 10 portfolios. Combined
individual models are: Fama and French (FF) 5-factor model, Q-factor (Qf) model and GARCH extensions (FF-
GARCH, Qf-GARCH).
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8 Appendix

In this section we provide details for the beam sampler.
Let K denote the number of active states in the state sequence s1:T , and ns

ji denote the number
of transitions from state j to state i from s1:T . Let nz

jl denote the number of observation is assigned
to model l through state j according to s1:T and z1:T that is, nz

jl = #{t : st = j, zt = l}.

1. Initializing: Choose a starting value for K and a starting state sequence s1:T consisting of
K active states which are labelled 1, . . . , K; The infinite many inactive states are merged
into one state. Choose a starting z1:T sequence consisting of L models which are labelled
1, . . . , L; Initialize Γ and Πk for k = 1, . . . , K, all of which have K +1 elements; Initialize ωk

for k = 1, . . . , K; Initialize θl for l = 1, . . . , L; Initialize η, α, κ, αω.

2. Sampling u1:T : For t = 1, . . . , T , sample ut from U(0, πst−1,stωst,zt).

3. Sampling Π, expanding K: If max{πk,K+1}Kk=1 > min{ut}Tt=1, repeat the following steps:

(a) Draw ΠK+1 ∼ Dirichlet(αΓ).
(b) Break the last probability weight of Γ, ΓK+1:

i. Draw ζ ∼ Beta(1, η).
ii. Add new probability weight ΓK+2 = (1− ζ)ΓK+1.
iii. Update ΓK+1 = ζΓK+1.

(c) Break the last probability weight of Πk for k = 1, . . . , K + 1:
i. Draw ζk ∼ Beta(αΓK+1, αΓK+2).
ii. Add new probability weight πk,K+2 = (1− ζk)πk,K+1.
iii. Update πk,K+1 = ζkπk,K+1.

(d) Draw ωK+1 ∼ DirL(αω

L
).

(e) Increment K.

4. Sample s1:T , z1:T from p(s1:T , z1:T |Π, ω, u1:T , y1:T , I1:T ) using the forward filtering and back-
ward smoothing method:

(a) Working sequentially forwards in time for t = 1, . . . , T , repeat the following steps:
Prediction step: for k = 1, . . . , K, l = 1, . . . , L calculate

p(st = k, zt = q|u1:T ,Π, ω, y1:t−1)

∝
K∑
j=1

L∑
l=1

1(ut < πj,kωk,q)p(st−1 = j, zt−1 = l|u1:T ,Π, ω, y1:t−1). (31)
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Update step: for k = 1, . . . , K, l = 1, . . . , L calculate

p(st = k, zt = q|u1:T ,Π, ω, y1:t)

∝ p(st = k, zt = q|u1:T ,Π, ω, y1:t−1)f(yt|y1:t−1,Mq). (32)

(b) Working sequentially backwards in time for t = 1, . . . , T , sample s1:T , z1:T :
i. Sample (sT , zT ) from p(sT , zT |u1:T ,Π, ω, y1:T ).
ii. Sample (st, zt) from p(st, zt|u1:T ,Π, ω, y1:t)1(ut+1 < πst,st+1ωst+1,zt+1) for t = T −

1, . . . , 1.

5. Cleaning up: Update K given s1:T , re-label all the active states in s1:T in the order of 1, . . . , K
and remove the inactive states where none of the combination is assigned; Adapt Γ, Π, ω
according to the new labelling; Collapse ΓK+1 and πk,K+1 for k = 1, . . . , K.

6. Sampling auxiliary variables o, ô, o: such that o = {oji}, ô = {ôj}, o = {oji}

(a) Sample o: For j = 1, . . . , K and i = 1, . . . , K, sample oji as follows: Set oji = 0. For
k = 1, . . . , ns

ji, draw xk ∼ Bernoulli( αΓl+κδ(j,i)
k−1+αΓi+κδ(j,i)

). If xk = 1, increment oji.
(b) Sampling ô: For j = 1, . . . , K, sample ôj ∼ Binomial(ojj, ρ

ρ+Γj(1−ρ)
).

(c) Update o: For j = 1, . . . , K and i = 1, . . . , K, set oji = oji if j ̸= i; set ojj = ojj − ôj.

7. Sampling Γ: let o.i =
∑

j oji for i = 1, . . . , K

Γ ∼ Dirichlet(o.1, . . . , o.K , η). (33)

8. Sampling Π: For k = 1, . . . , K, sample

Πk ∼ Dirichlet(αΓ1 + ns
k1, . . . , αΓk + κ+ ns

kk, . . . , αΓK + ns
kK , αΓK+1). (34)

9. For a given s1:T and z1:T and exploiting conjugacy ω1:K is sampled as

ωk ∼ Dir
(
nz
k1 +

αω

L
, . . . , nz

kL +
αω

L

)
,

where nz
kl and nz

kq respectively denote the number of observations assigned to model l and q
by state k according to s1:T and z1:T . That is, nz

kl = #{t : st = k, zt = l}.

10. Sampling hyperparameters η, α and κ: let nk. =
∑

i n
z
ki, o.. =

∑
j

∑
i oji, ô. =

∑
j ôj,

o.. =
∑

j

∑
i oji,

(a) Sample α + κ:
i. For k = 1, . . . , K, draw ξk ∼ Bernoulli( nk.

nk.+α+κ
).

ii. For k = 1, . . . , K, draw ξ̃k ∼ Beta(α + κ+ 1, nk.).
iii. Sample α + κ ∼ Gamma(c2 + o.. −

∑K
k=1 ξk, c3 −

∑K
j=1 logξ̃j).
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(b) Sample ρ: Sample ρ ∼ Beta(c4 + ô., c5 + o.. − ô.).
(c) Sample η:

i. Draw τ̃ ∼ Bernoulli( o..
o..+η

).
ii. Draw τ ∼ Beta(η + 1, o..).
iii. Sample η ∼ Gamma(c0 +K − τ̃ , c1 − log(τ)), where K =

∑K
i=1 1(o.i > 0).

11. Sampling αω:let αω ∼ Gamma(c6, c7), sample αω from the following density using a random
walk Metropolis-Hasting,

p(αω|ω, c6, c7) ∝
K∏
j=1

( Γ(αω)

Γ(αω

L
)L

ω
αω
L

−1

j1 . . . ω
αω
L

−1

jL

)
p(αω|c6, c7)

12. Repeat 2-11.
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