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Abstract

This paper studies a one-sender-one-receiver disclosure game with gen-
eral receiver preferences and message structures. Drawing on techniques from
information design, I provide a characterization of the Perfect Bayesian Equi-
librium outcomes. I find that any PBE can be interpreted as a combination of
cheap talk equilibria in a partitional form. I revisit Milgrom (1981, 2008) and
identify conditions for the classic unraveling result. I provide an algorithm
to construct a PBE in games with linear disclosure structure. In addition, I
apply the theory to examples of labor markets and political campaigns. The
theory explains why communication usually involves presentation of evidence
and randomization over messages.
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1 Introduction

Hard evidence is an important feature of how individuals and organizations commu-
nicate. Agents can convey valuable information by providing documents, degrees,
receipts, footage, etc. For instance, a potential worker will only be able to provide
a professional certificate if he has been well trained and passed a series of exami-
nations. A researcher can only be able to provide particular statistical results from
data analyses, if certain hypotheses are true. The credibility of hard evidence origi-
nates from the fact that the evidence can only be provided in certain circumstances.
In light of this, when an agent receives hard evidence, she will update her belief
about whether an event is true or false.

In an influential series of papers, Grossman (1981) and Milgrom (1981) introduce
disclosure games: A privately informed sender (he) chooses which hard information
to reveal to a receiver (she). After observing the information, the receiver chooses an
action that impacts both her and the sender’s payoffs. The literature on information
disclosure has focused on what evidence to reveal. In Grossman (1981) and Milgrom
(1981), this is manifested as a sender perfectly revealing his information by providing
precise evidence. Verrecchia (1983), Dye (1985), Eso and Galambos (2013), and
Hotz and Xiao (2013) show that the sender can also selectively present evidence
— perfectly revealing the goods news while hiding the bad news. In contrast, this
paper focuses on how to present evidence. There are two important ways in which
the sender may choose to present evidence. First, the sender may randomize which
evidence he sends. Second, the sender may augment the evidence with cheap talk
messages. For instance, a journalist can stochastically report evidence from the
set of material he collected. He may also augment that evidence by making use of
natural language.

This paper studies a general disclosure game, where the sender can both random-
ize evidence and augment evidence with cheap talk messages. The message structure
satisfies a natural condition called strong normality. Intuitively, it is the idea that
the sender can provide any combination of the evidence he has. Strong normality
encompasses almost all the message structures found in applications. The paper
follows the literature in assuming that the sender’s payoffs are state independent.
But unlike the literature, it allows for general state-dependent receiver payoffs. (The
literature typically assumes that the receiver’s payoffs take specific functional forms
or satisfy properties like single-peakedness or concavity.)

The main result of the paper characterizes the Perfect Bayesian Equilibrium
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(PBE) outcomes of disclosure games. In equilibrium, the sender presents evidence
in a way that effectively partitions the state space. So, at every state in a partition
member, the sender will reveal information that is consistent with the partition
member. Moreover, often, the sender may provide evidence that is inconsistent
with other partition members. (When other partition members are consistent with
the evidence, an incentive compatibility condition will ensure that the sender does
not mimic the evidence in other states.) As a consequence of this partitioning, the
disclosure game can be divided into auxiliary games, with each partition member
acting as a state space. Within each auxiliary game, the sender randomizes evidence
and cheap talk messages. This leads the receiver to optimize in a way that makes
the sender indifferent at every state in the same partition member.

This equilibrium characterization is familiar from the cheap-talk literature. Lip-
nowski and Ravid (2020) study cheap talk with state-independent sender prefer-
ences. They show that the equilibrium is characterized by the sender randomizing
over messages and getting paid equally. By contrast, this paper studies an informa-
tion disclosure game. It shows that the sender will use hard evidence to partition the
state space and, given the partition member, the equilibrium behavior will coincide
with the cheap talk equilibrium.1 Put differently, a PBE outcome of the disclosure
game is equivalent to a combination of cheap talk equilibrium outcomes in separated
auxiliary games.

To characterize the PBE outcomes, the paper borrows techniques from the in-
formation design literature. By doing so, I can geometrically characterize the ex
ante distributions of the receiver’s beliefs and the sender’s payoffs. Unlike the infor-
mation design literature, here, the sender has incentive constraints at each state.2

Because the sender’s payoffs are state-independent, these incentive constraints can
be translated into feasibility constraints on the geometric formulation of equilibrium
outcomes. Section 5 discusses this method in detail.

Using the method developed here, the paper studies disclosure under two specific
assumptions about the message structure: full verifiability and linear disclosure.
Under full verifiability, the sender can prove any true event. The paper shows
that full disclosure is the unique equilibrium outcome, when the message structure
satisfies full verifiability, the sender’s preferences are monotonic, and the receiver’s
preferences satisfy diminishing marginal utility. This significantly generalizes the

1The partitional equilibrium in Crawford and Sobel (1982) originates from conflicts of interest
between the sender and receiver. In this paper, the partition is due to the property of hard evidence.

2This is not the case in the information design literature, where the sender commits to a signaling
device.
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classic unravelling result in Milgrom (1981, 2008), which assume that the receiver’s
payoffs satisfy a single-crossing condition. Seidmann and Winter (1997), Mathis
(2008), and Giovannoni and Seidmann (2007) generalize the unraveling result in a
different direction. They extend the result to the case of state-dependent sender
preferences and require stronger conditions than this paper. Hagenbach, Koessler,
and Perez-Richet (2014) explore sufficient conditions for the existence of a fully
revealing equilibrium, but not necessarily a unique fully revealing equilibrium.

In linear disclosure, the states are linearly ordered and superior states have more
messages. For instance, suppose the states reflect personal wealth w and the sender
can verify that his wealth is at least v ≤ w. Then higher levels of wealth are associ-
ated with more abundant a set of available messages. In this case, the equilibrium
outcome reduces to partition members that are increasing both in the disclosure
order and in sender payoffs. Drawing on the securability result in Lipnowski and
Ravid (2020), I provide an algorithm that generates an equilibrium in this class of
games.

The remainder of this paper is organized as follows. Section 2 summarizes the
related papers in the literature. Section 3 gives a numerical example to provide in-
tuition for the general results. Section 4 lays out the basic model. Section 5 presents
the main result, i.e., the characterization of PBE outcomes. Section 6 focuses on the
case of full verifiability and generalizes the “unraveling” result. Section 7 focuses
on the case of linear disclosure and develops an algorithm to generate an equilib-
rium. Section 8 applies the theory to an example of political campaigns. Section 9
concludes.

2 Literature Review

The extant literature on disclosure has been focusing on how to maximize informa-
tion revelation and the receiver’s welfare. The pioneering papers, Milgrom (1981)
and Grossman (1981), demonstrate that when a seller wants to convince a buyer
that his product has high quality, he has no choice but disclosing all information.
Otherwise, a rational buyer would assume the worst and take an action unfavorable
to the sender. The following papers explore conditions for sustaining equilibria with
full information in a class of games that relax the assumption of state-independent
sender payoff (Seidmann and Winter, 1997; Mathis, 2008; Giovannoni and Seid-
mann, 2007). Another branch of the literature lies at the intersection of disclosure
and mechanism design. Green and Laffont (1986) and Bull and Watson (2007) prove
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the extended revelation principle that any implementable social choice function can
be implemented by a direct mechanism under which the sender provides the most
precise evidence. In addition, there are recent papers on disclosure that focus on
finding conditions under which the optimal mechanism for the receiver does not
bring her a payoff higher than the maximal equilibrium payoff (Hart, Kremer, and
Perry, 2017; Ben-Porath, Dekel, and Lipman, 2019).

In contrast to the receiver, the analysis of the sender’s behavior is relatively
simple. In most papers mentioned in the last paragraph, it is without loss to think
of the sender providing as much evidence as he can. Even in the studies where
information is not fully revealed (Verrecchia, 1983; Dye, 1985; Eso and Galambos,
2013; Hotz and Xiao, 2013; Rappoport, 2020), the sender discloses the true state
in a certain range of states but pools the rest of states. This paper extends the
analysis of the sender’s disclosure behavior to the study of how he may randomize
evidence. Sometimes, as in Section 3, a mixed strategy of the sender is prescribed
by the unique equilibrium.

One related paper is Forges and Koessler (2008), which provide a geometric char-
acterization of the equilibrium outcomes in a repeated disclosure game under the
assumption of arbitrary state-dependent sender preferences. Different from the cur-
rent paper, they study the extensive-form of disclosure games and restrict attention
to the message structure with full verifiability.

There are recent communication models (Kamenica and Gentzkow, 2011; Lip-
nowski and Ravid, 2020) that characterize the geometric formulation of equilibrium
outcomes. Kamenica and Gentzkow (2011) study a persuasion model in which the
sender does not have private information and he can choose from any signaling de-
vices to send signals. They demonstrate that the maximal payoff to a sender is on
the concave closure of his value function on the belief space. The difference in this
paper is that I assume private information to the sender, so that the sender’s strat-
egy has to satisfy incentive constraint at each state. Lipnowski and Ravid (2020)
apply the geometric method to cheap talk with state-independent sender payoff.
They find that an equilibrium takes a simple form: the sender randomizes over mes-
sages and receives the same payoff from sending each message. This is exactly what
happens in each partitional member in a disclosure game. Besides, Lipnowski and
Ravid (2020) give a result to identify cheap talk equilibria, which will be used in
Section 7 to provide an algorithm to generate a PBE in a linear disclosure game.
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3 Example

This section presents three examples to illustrate general features of equilibrium of
a disclosure game. The first example shows that any equilibrium can be interpreted
as a combination of cheap talk equilibria in a partitional form. The second example
stresses the lower bounds for the sender’s equilibrium payoffs in each partition mem-
ber based on the message structure. The third example focuses on the importance of
the linking between the sender’s payoffs across partition members, so that the sender
does not want to mimic states outside the partition member his state belongs to.
As will be shown in Section 5, these examples correspond to three conditions in the
characterization of PBE outcomes.

3.1 Labor Market I

A firm is recruiting a worker for a position in either the Finance Department (F)
or the Accounting Department (A). In addition, the firm has the option to reject
the worker’s application (R). The worker prefers finance, to accounting, to being
rejected. The firm’s preference depends on the quality of the worker: the worker
can either be unskilled (u), a skilled financial analyst (f) or a skilled accountant (a).3

Suppose a skilled employee is productive only in his profession. So that a financial
analyst will bring the firm a net benefit of 1 in F and an accountant 1 in A. If the
worker is mismatched or unskilled, he will not generate any return; instead, he will
incur some costs to the firm for wasting resources in training and for slowdown in
teamwork.

Table 1 presents the payoffs for the worker and the firm. The first argument of
each table entry is the payoff to the worker, and the second is that to the firm. Let
µ = (µu,µf ,µa) be the probabilities of the applicant’s being unskilled, a financial
analyst, and an accountant. The state is private information for the worker, and
there is a common prior µ0 = (1

2 ,
1
4 ,

1
4).

Suppose for a financial analyst or an accountant, he has a degree d that he can
present to ensure his skillfulness. (Yet d does not indicate which skill he has.4)

3Including another type which is good at both finance and accounting will not change the insight
of this example, when the probability of this type is low. But adding it will significantly complicate
the analysis, so for simplification I choose not to include this type.

4If d differentiates between the finance and accounting types, full information is one equilibrium
outcome. Here I focus on a case where the evidence is coarse. In the next two examples, Labor
Market II and Labor Market III, I will further change the message structure and examine its effect
on the equilibrium outcomes. The theory, however, allows me to study all variants on the current
message structure satisfying the conditions specified in Section 4.
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Firm’s Action
F A R

State
f 2,1 1,-2 0,0
a 2,-2 1, 1 0,0
u 2,-2 1,-2 0,0

Table 1: Payoffs for the Worker and the Firm

Furthermore, the worker can always send two cheap talk messages, mF , meaning
“I want to go to the Finance Department,” and mA, meaning “I want to go to
the Accounting Department.” The worker can simultaneously present d and send
a message mF or mA. For simplicity of exposition, I denote by dF (resp. dA) the
combination of d and mF (resp. mA). In summary, a skilled type — a financial
analyst or an accountant — has a message set {mF ,mA,dF ,dA}, while the unskilled
type has only {mF ,mA}.

By default the firm will reject the application, so a burden is on the worker to
reveal information about his types. But he is in a situation where either sending
messages or presenting the degree alone does not change the firm’s action. If he only
sends messages, it reduces to cheap talk — the information is not credible enough.5

If he only presents evidence when he is a skilled type, the firm knows he is skilled
but is unsure of which skill he has, so it still cannot make him an offer.

Below I will present the Pareto optimal equilibrium of this game. Consider
the following strategy profile: in f , the worker presents dF , and in a, the worker
randomizes between dA and dF with probability half-half. Upon receiving dF , the
firm updates its belief to (0, 2

3 ,
1
3). With this belief it is indifferent between F and

R. Let the firm randomize between F and R with probability half-half; it leads to
expected payoff 1 for the worker. After dA, the firm is sure that the worker is good
at accounting, so it makes an offer A. The payoff to the worker is also 1. This is a
PBE, because in f and a, the expected payoffs to the worker from sending both dF
and dA are equal to 1, which justifies the randomization in a. In u, the worker has no
access to dF and dA, and therefore cannot mimic f or a. This is the Pareto-optimal
equilibrium outcome because the skilled types have reached their maximum payoff
and the firm has seen the maximal amount of information being revealed.6

5That is because that the prior probability of u is high. When µ0(u)≤ 1
3 , the sender’s preferred

equilibrium is that the unskilled type can partially pool with the finance type and partially pool
with the accounting type. One can find this “cheap talk” equilibrium by the method developed in
Lipnowski and Ravid (2020).

6As will be discussed later, the skilled types reach the highest payoff that is described by the
quasi-concave closure of the worker’s continuation payoff. The firm has maximal information in
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Figure 1: The Pareto Optimal Equilibrium of the Labor Market

Next, I will introduce the geometric approach to reach this conclusion that will
also be applicable to a broad class of games. By taking this approach, I can use
convenient geometric properties of an equilibrium to solve for the outcomes. To
understand the approach, note the firm’s decision depends on its assessment of the
worker’s quality. Figure 1(a) shows the best response of the firm to each belief. Fig-
ure 1(b) shows the continuation payoffs to the worker given the firm’s best responses.
The colored areas correspond to the worker’s payoffs, given the firm’s different best
responses. For instance, when the firm’s belief lies in the orange area, it will offer
F, and the payoff for the worker is 2. On the borders between the areas, the firm
randomizes between actions, resulting in a continuum of possible payoffs for the
worker.

Again focus on the Pareto-optimal equilibrium where a skilled type wishes to

Blackwell order. Wu (2018) proves that an information structure is more informative when the
distribution of its induced posterior beliefs is more “dispersed” under certain conditions. This
strategy induces a distribution of posterior beliefs that spread out more than any other equilibria.

8



separate from a non-skilled type by providing evidence. That means in equilibrium,
the employer is sure about whether the worker is skilled or not. If the firm learns
the worker is skilled, it will assign probabilities half-half to f and a. The conditional
probability (µf ,µa) = (1

2 ,
1
2) is illustrated by the black dot in Figure 1(c). Now I

can regard {f,a} as the state space of an auxiliary game with a prior (1
2 ,

1
2). The

previous strategy profile induces randomization over belief points as illustrated by
the green points in Figure 1(c). The domain of the blue points are posterior beliefs
of the firm, and the expected payoff to the worker at each belief point is 1.

The equilibrium outcome restricted in {f,a} coincides with a cheap talk equilib-
rium in Lipnowski and Ravid (2020), that characterize cheap talk equilibria under
sender state-independent preferences. They show that every equilibrium outcome
takes the form of a feasible distribution over posterior beliefs with equal associated
payoffs for the sender. Here this condition is satisfied, provided that, in Figure 1(c),
the payoff associated with each blue point is 1. The difference in disclosure is that
the equilibrium takes a partitional form. One auxiliary game has a trivial state
space {u}, and another a state space {f,a}. The equilibrium outcome within each
game is equivalent to a cheap talk equilibrium. As will be shown in Section 5, this
is a general feature of any equilibrium of disclosure games.

In light of this structure, I can translate the question of finding the worker’s
favorite equilibrium into that of finding his favorite cheap talk equilibrium in each
partition member. According to Lipnowski and Ravid (2020), the maximum (ex-
pected) payoff a sender can achieve with cheap talk messages can be expressed by
the quasi-concave closure of his value function. In this example, the quasi-concave
closure conditional on the fact that the worker is skilled is represented by the red
curve in Table 1(c). Therefore, given the conditional probability, the skilled types’
maximum payoff is 1 and the equilibrium described above is the most preferred by
the worker.

Furthermore, this example also shows how equilibria differ in related communi-
cation games. In Bayesian persuasion, the worker has commitment power and there
is an equilibrium where the unskilled can partially pool with the financial analyst
and partially with the accountant. The equilibrium posteriors are (1,0,0), (1

3 ,
2
3 ,0),

and (1
3 ,0,

2
3). If it is a cheap talk, then communication is impossible, no information

is transmitted, and the payoff is 0 for both the worker and the firm.
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Firm’s Action
F A R

State
f 2,2 1,0 0,0
a 2,0 1,1 0,0
u 2,-2 1,-2 0,0

Table 2: Payoffs for the Worker and the Firm

3.2 Labor Market II

In the above example, for any s ∈ [0,1], there is an equilibrium where the worker’s
payoff is s at f and a. The equilibrium strategy is as follows. In f , the worker sends
dF and dA with probabilities 2

3 and 1
3 , and in a, the worker sends dF and dA with

probabilities 1
3 and 2

3 . Upon receiving dF , the firm plays F with probability s
2 and

R with the complementary probability; upon receiving dA, the firm plays A with
probability s

1 and R with the complementary probability. In u, the worker can only
send cheap talk messages, which is followed by rejection from the firm.

But the equilibrium outcomes are sensitive to change in the message structure.
Suppose that the accounting type has another certificate c that can identify his own
type, everything else unchanged. Then, the sender’s equilibrium payoff, either in f
or a, takes on a unique value 1. The reason is that the accounting type can guarantee
himself payoff 1 by presenting c, which rules out other lower equilibrium payoffs.

This example suggests that there is a lower bound for the sender’s equilibrium
payoff in each partition member. Because evidence can effectively transmit infor-
mation even off the equilibrium path, the sender can leverage available evidence to
achieve a higher payoff than in cheap talk.

3.3 Labor Market III

Suppose I make changes in the labor market example in the following ways: (1) the
common prior µ0 = (1

3 ,
1
3 ,

1
3); (2) the preferences are presented in Table 2; (3) the

available messages in u, f , and a are {m}, {m,e1}, and {m,e2}, respectively.
Since now the finance and accounting types have evidence to distinguish them-

selves, full information is one equilibrium outcome. But is it an equilibrium if the
unskilled type stands alone and the finance and accounting types pool together? It
is plausible because this structure consists of two cheap talk equilibria: in {u}, the
firm plays R, and in {f,a}, the firm plays F . Also, the expected payoff 2 is the
highest payoff the worker can expect in this game.

But the worker’s payoffs, if in equilibrium, are not compatible with the message
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structure. If f and a pool, the only possible message that the worker can use for
this pooling is m — the common message shared by f and a. Yet once m is being
used, the unskilled type is able to mimic the skilled types, so that the worker should
get paid no lower in u than in f and a. This contradicts that the skilled types get
paid 2, while the unskilled type 0.

This example suggests the necessity for the third condition, in addition to the
partitional form and lower bounds, on the linking between the sender’s payoffs across
partition members. In Section 5, I will summarize this condition in Lemma 3. One
surprising finding is that, even though the condition is concerned with strategy and
message structure, it can be directly imposed on the geometric formulation of the
PBE outcomes.

4 Model

There is a finite state space Ω. Let ∆(Ω) be the set of probability measures on
Ω. An event E is a nonempty subset of Ω, and ∆(E) denotes the set of probability
measures in ∆(Ω) with support in E. There is a full support common prior, denoted
by µ0 ∈ int(∆(Ω)).

There are two players, a sender (S) and a receiver (R). The timing is as follows.
Nature picks a state ω ∈ Ω according to µ0. Then S learns ω and provide evidence
to R. I model evidence by having the set of available messages depend on the state.7

For each ω, the messages available to S at ω are contained in a countable set M(ω).
Let M = ⋃

ω∈ΩM(ω) be the set of all messages. Upon receiving a message, R takes
an action from a finite set A. In Sections 6 and 7, I relax the action set to be a
compact metrizable space. I often write a for a mixed action , i.e., a ∈∆(A).

S has a (continuous) state-independent payoff function uS : A→ R, while R has
a (continuous) state-dependent payoff function uR :A×Ω→R. Denote the players’
expected payoff functions by US : ∆(A)→ R and UR : ∆(A)×∆(Ω)→ R.8

7The state-dependent message set is also assumed in language games (Blume and Board, 2013).
This class of games have two differences. First, aside from the state, the message structure is also
private information to players. Second, the restraint on a message set not only constrains message
availability, but also players’ understanding of messages.

8UR refers to R’s interim payoff after she receives a message, so her (mixed) action is indepen-
dent of her belief.
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4.1 Message Structure

Say that a message m verifies an event E if (1) for each ω ∈ E, m ∈M(ω), and (2)
for each ω 6∈ E, m 6∈M(ω). Or equivalently, E = {ω ∈ Ω |m ∈M(ω)}. Write mE

for a generic message that verifies E and M (E) the set of messages that verify E.
Note that mE is consistent with each state in E, and inconsistent with each state
not in E. In this sense, it provides evidence for E.9 Conversely, call the event E
that is verified by mE the inference from mE .

A message that verifies a state ω is denoted by m{ω}, which induces a degenerate
probability distribution, δ(ω), that puts all weight on ω. I define the set of inferences
of messages that are available at ω as F (ω) = {E ⊆ Ω |∃mE ∈M(ω)}. Following
from the definition of M (E), the set of available messages at ω, M(ω), is composed
of all evidence that can be used to verify E ∈F (ω).

Lemma 1. For each ω ∈ Ω, M(ω) = ⋃
E∈F (ω) M (E).

Note, for a given E, M (E) may be empty, i.e., S may not be able to verify E.
Suppose that the true state lies in E and S would like to verify E but cannot. Then
he might use a message mK for some K )E. This message is consistent with E and
rules out certain irrelevant states (when K 6= Ω), i.e., states in Ω\K ⊆Ω\E. Absent
strategic considerations, it increases the conditional probability of E. As such, I refer
to such a message mK as weak evidence for E. Let M ∗(E) = {mK ∈M |E ⊆K} be
the set of messages that provide weak evidence for E. Note that mE is also weak
evidence for E.

Throughout the paper, I will impose two assumptions on message structure: rich
language and strong normality.

Definition 1. S has a rich language if (1) |M (Ω)| is countably infinite, and (2) for
each event E ( Ω, either M (E) = ∅ or M (E) is countably infinite.

The first condition says that there is a countable infinity of cheap talk messages,
i.e., the messages in M (Ω) that are universally available. The second condition says
that each piece of evidence, if it exists, has a countable infinity of copies. At first
glance, the second condition may appear restrictive; but it is not. To understand
why, suppose there is a single piece of evidence for E. Then S can combine this
evidence with cheap talk messages to create equivalent copies. For example, when
presenting the evidence, S can say “This is the evidence to support E,” “Based on

9The meaning of “evidence” is broader than a “verifying” message. A message mF , s.t. F (E
is evidence for E, yet I do not say that it verifies E.
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this evidence, E is true,” “I can prove that E is true,” etc. Each combination of
evidence and a statement forms a distinct message with the same substance.

The second assumption is called strong normality. The idea is that if S can
provide R with more than one piece of evidence, he should be able to present any
combination of them. The inference of such a combination should be the conjunction
of the inferences of different pieces of evidence.

Definition 2. A message structure is strongly normal if for each pair of events
E,E′ ⊂ Ω with E∩E′ 6= ∅, M (E) and M (E′) 6= ∅, it is the case that M (E∩E′) is
nonempty.

To understand the idea, suppose that, at a state ω, S can verify E and E′,
i.e., E,E′ ∈F (ω). Then by providing the joint evidence (mE ,mE′),10 S can verify
that (1) (mE ,mE′) is consistent with each state in E ∩E′, and (2) (mE ,mE′) is
inconsistent with Ω\(E∩E′). Thus, M (E∩E′) should be nonempty.

Strong normality is related to a widely used assumption, normality,11 which
embodies the idea that S should be able to present all evidence in his possession.

Definition 3. A message structure is normal if for each ω ∈ Ω, M (⋂
E∈F (ω)E) is

nonempty.12 That is, the intersection of the inferences of all messages at ω can be
verified.

Figure 2 illustrates the difference between these two concepts. There, Ω =
{ω1,ω2,ω3,ω4}. A message is identified with a set of states consistent with that
message - thus its inference is represented by dashed lines. For instance, in Figure
2(a), there are five messages corresponding to the events {ω1}, {ω2}, {ω1,ω2,ω3},
{ω1,ω2,ω4}, and Ω. When the state is ω1, S can verify {ω1}, {ω1,ω2,ω3}, {ω1,ω2,ω4},
and Ω. Of course, mΩ represents a cheap talk message. If S presents all evidence
he has, he would verify {ω1}. The existence of evidence to verify {ω1} corresponds
to the fact that the message structure is consistent with normality. But it vio-
lates strong normality. Think of S simultaneously presenting evidence that verifies
{ω1,ω2,ω3} and {ω1,ω2,ω4}; then R should conclude that the state is either ω1 or
ω2. Strong normality requires that S can achieve this effect through a message that
verifies {ω1,ω2}. Yet under this message structure, he is unable to do so. Figure

10In the game, only one message is allowed to be sent, so the representation of joint evidence is
only for the sake of interpretation.

11See Lipman and Seppi (1995), Bull and Watson (2007), Hart et al. (2017), and Ben-Porath
et al. (2019).

12Normality is expressed in different ways in Lipman and Seppi (1995) and Bull and Watson
(2007), but this definition is essentially the same as theirs.
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ω3 ω4

(a) Normality
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ω3 ω4

(b) Strong Normality

Figure 2: Comparing Normality and Strong Normality

2(b) adds an event that verifies {ω1,ω2}; that message structure satisfies strong
normality.

Because a cheap talk message, mΩ, is weak evidence for every event, M ∗(E) is
nonempty, for each E ⊆ Ω. Furthermore, strong normality implies that among all
weak evidence for E, there is one piece of weak evidence, namely maximal weak
evidence, that conveys the most precise information.

Definition 4. A message mF ∈M (F ) is maximal weak evidence for E if:

1. E ⊆ F .

2. For each mF ′ ∈M (F ′) s.t. E ⊆ F ′, F ⊆ F ′.

I use m∗(E) to denote maximal weak evidence for E.

Let W (E) = {K ⊆ Ω |∃mK ∈M ∗(E)} = {K ⊇ E |M (K) 6= ∅} include the in-
ferences of all weak evidence for E. If S presents m∗(E), it is equivalent that he
provides all the weak evidence for E in the meantime. Therefore, m∗(E) verifies⋂
K∈W (E)K. Write the inference of m∗(E) as E∗ = ⋂

K∈W (E)K.

Lemma 2. For each E ⊆ Ω, there is maximal weak evidence for E. Moreover,
m∗(E) verifies E∗.

For each ω ∈E∗, I call ω an indistinguishable state from E. That means whenever
S provides weak evidence for E, the information does not rule out the possibility of
ω. Alternatively, it means that S has access to all weak evidence for E at ω.

Take the message structure in Figure 2(b) for example. There is no message that
verifies {ω2,ω4}, but there is weak evidence for the event that verifies {ω1,ω2,ω4}.
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It is also maximal weak evidence for {ω2,ω4}, i.e., {ω2,ω4}∗ = {ω1,ω2,ω4}. So the
indistinguishable states from {ω2,ω4} are ω1,ω2, and ω4.

4.2 Equilibrium

This paper focuses on the solution concept of Perfect Bayesian Equilibrium (PBE). A
strategy of S is a mapping σ : Ω→∆(M), a strategy of R is a mapping ρ :M→∆(A),
and a belief system is a mapping φ : M → ∆(Ω). A PBE E is a triple (σ,ρ,φ)
satisfying following conditions.

Definition 5. A profile (σ,ρ,φ) is a Perfect Bayesian Equilibrium if the following
hold:

1. For each m ∈M , ρ(m) ∈ argmaxa∈∆(A)U
R(a,φ(m)).

2. For each ω ∈ Ω and m ∈ supp(σ(ω)), m ∈ argmaxm′∈M(ω)U
S(ρ(m′)).

3. For each m ∈ ⋃
ω∈Ω supp(σ(ω)), φ(m) is updated by Bayes rule.

A PBE (σ,ρ,φ) is called a fully revealing equilibrium if, for each ω ∈ Ω and
m ∈ supp(σ(ω)), φ(m)(ω) = 1. In a fully revealing equilibrium, R is always able to
correctly infer the true state. On the contrary, if in a PBE, for each ω ∈ Ω and
m ∈ supp(σ(ω)), φ(m)(ω) = µ0, then I say that the PBE is uninformative. If a PBE
is neither fully revealing nor uninformative, I call it a partially revealing equilibrium.

5 Characterization of PBE outcomes

In this section I use techniques from information design to characterize the PBE
outcomes. Instead of directly characterizing PBE in Definition 5, I propose an equiv-
alent formulation of PBE that characterizes distribution of posterior beliefs and
associated payoffs. Unlike the information design literature - where S can choose
freely from arbitrary information structures - here his choice is restricted by feasi-
bility constraints. The key is that these constraints can be incorporated into the
geometric approach.

Define the best response correspondence of R as r : ∆(Ω)⇒∆(A). So, r(µ) gives
the set of optimal (mixed) actions to the belief µ∈∆(Ω), i.e., r(µ) = argmaxa∈∆(A)U

R(a,µ).
Given the optimal response from R to µ, the set of S’s possible payoffs is V (µ) =
{US(a) |a ∈ r(µ)}. Call V : ∆(Ω)⇒ R the value correspondence for S. By Berge’s
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Maximum Theorem, for each µ ∈ ∆(Ω), V (µ) is nonempty, compact, and convex,
and V is upper hemicontinuous.

To capture the informational content of the sender’s strategy, define an informa-
tion policy, τ ∈∆(∆(Ω)), as an ex ante distribution of beliefs, whose expectation is
equal to the prior, i.e., E[τ ] = µ0. Let

I = {τ ∈∆(∆(Ω)) |E[τ ] = µ0 and |supp(τ)| is countable}

denote the set of all information policies.13 Also, I define a conditional information
policy in E, τE ∈∆(∆(E)), to be an ex ante distribution of beliefs such that E[τE ] =
µ0(·|E).

Any strategy σ of S induces such an information policy. Conversely, any infor-
mation policy can be generated by some strategy σ (Aumann and Maschler, 1995;
Kamenica and Gentzkow, 2011).14 Instead of studying S’s strategy, I will explore
the features of the corresponding information policy.

Next, I introduce notation for the payoffs to S conditional on the realization of
posterior beliefs. Let λ : ∆(Ω)→R be the equilibrium payoff function that associates
each equilibrium belief with a continuation payoff for S. But it does not incorporate
the expected payoff for R. Call (τ,λ) a PBE outcome if it is induced by a PBE
(σ,ρ,φ). To be concrete, that means τ is induced by σ, and for each µ ∈ supp(τ)
that is induced by m ∈M , λ(µ) = US(ρ(m)).

Then I discuss the necessary conditions to support (τ,λ) as a PBE outcome. First
note that for each µ ∈ supp(τ), λ(µ) ∈ V (µ), which captures that R best responds
to her belief. With this in mind, I focus on the constraints on S.

Before I dive into the details, I make an important observation that any PBE
takes a partitional form. Since S’s payoff only depends on the receiver’s action, in
any two states if S uses a message in common, he gets paid equally in these two
states. This equivalence relation induces equivalence classes among the state space,
which form a partition of Ω. Conversely, any message comes from one equivalence
class, so that in equilibrium, the equivalence classes coincide with informational
partition.

I denote a partition of the state space Ω by P. If an information policy τ

can be split into conditional information policies in each partition element of P,
{τP}P∈P , I say that τ is governed by partition P. Formally, it means that for

13Since there are countable messages in this game, information policies have countable supports.
14The formula that gives how to find a strategy σ that induces a certain information policy τ is

provided in Kamenica and Gentzkow, 2011, pg.2596.
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each µ ∈ supp(τ), supp(µ)⊆ P for some P ∈P. In equilibrium, τ is governed by a
partition P, so that for each P ∈P, and each µ,µ′ ∈ supp(τP ), λ(µ) = λ(µ′). To
simplify exposition, I use λP to represent the equilibrium payoff to S in a partition
member P .

Now I discuss the condition that S does not want to mimic other states. Under
a partition P, suppose ω ∈ Ω is contained in P ∈P. In ω, though S has no
incentive to mimic any ω′ ∈ P due to indifferent payoffs, he may want to mimic
some ω′′ ∈ P ′ 6= P . This calls for a payoff relation between {λP}P∈P to support the
equilibrium.

If in ω ∈ P , S can send a message that is being used in ω′ ∈ P ′, that means
λP ≥ λP ′ . But this discussion depends on the message structure and the strategy of
S. It is not clear, however, what condition to put on a pair (τ,λ). The challenge is
that there are many ways to induce the same information policy by using different
sets of messages. So it is hard to relate the realization of a belief to the message
availability in other states. Fortunately, I only need to focus on the maximal weak
evidence for the information, regardless of how complicated the message structure
is.

Suppose (τ,λ) is a PBE outcome and τ is governed by P. For a given µ ∈
supp(τ), supp(µ)⊆ P ∈P. Suppose µ is induced by a message mE , that means S
must send mE at each ω ∈ supp(µ), as prescribed by his strategy σ. It implies that
mE ∈M(ω), for each ω ∈ supp(µ). So by the definition of verifiability, E ⊇ supp(µ)
and mE is weak evidence for supp(µ). By Lemma 2, there is maximal evidence
m∗(supp(µ)) for supp(µ). Since m∗(supp(µ)) is more precise than mE , it has a
narrower inference, i.e., supp(µ)∗ ⊆ E. Then, for each state ω ∈ supp(µ)∗, I have
ω ∈ E. Thus, mE ∈M(ω). As a result, S has access to the message used in P ;
if ω ∈ P ′, λP ′ ≥ λP . Notice that this condition holds whenever µ is realized in
equilibrium, irrespective of which message is being used to induce µ.

Therefore, I have the following result.

Lemma 3. Suppose (τ,λ) is a PBE outcome and τ is governed by P. For each
P,P ′ ∈P, µ ∈ supp(τP ), and ω ∈ P ′, if ω ∈ supp(µ)∗, then λP ′ ≥ λP .

So far I have obtained the condition under which S does not want to mimic other
states, the remaining task is to prove that S would not deviate to out-of-equilibrium
messages.

What is S’s minimal payoff if he verifies an event E, regardless of whether it is
on or off the equilibrium path? Given that R holds a belief consistent with E and
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Figure 3: Lower Bound b in Section 3.2

takes an optimal action, I denote this minimal payoff by

π(E) = min{US(a) |a ∈ r(µ) for some µ with supp(µ)⊆ E}.

When the state is ω, S can guarantee himself a payoff g(ω) = max{π(E) |E ∈
F (ω)} by providing information to verify a certain event. Hence, g(ω) serves as the
lower bound for S’s equilibrium payoff at ω. Recall in the example of Section 3.2, a
finance type can at least prove that he is skilled, but the firm might still reject his
application, so g(A) = 0. A accounting type can identify himself with a certificate,
in this case the firm would make an offer M , so g(S) = 1. For the unskilled, he can
prove nothing, so g(U) = 0.

Generally, suppose at ω, S sends a message mE (ω ∈ E), which induces a belief
µ= φ(mE) and a payoff λ(µ). His payoff should be no lower than the lower bound,
so that λ(µ) ≥ g(ω). In addition, this inequality holds for all ω ∈ supp(µ), and
state-independent preferences imply that the lower bound for S’s equilibrium payoff
conditional on the realization of µ is b(µ) = max{g(ω) |ω ∈ supp(µ)}.

Lemma 4. For each PBE outcome (τ,λ) and each µ ∈ supp(τ), λ(µ)≥ b(µ).

Lemma 4 suggests that any value point in V below the lower bound b(·) should
not be considered as an equilibrium outcome. Figure 3 presents the lower bound
function in the example in Section 3.2. One feature of b is that in the relative interior
of each face of the belief simplex, b takes on the same value.

As above, I have listed all conditions a PBE outcome has to satisfy, and I will
show that these conditions are also sufficient for a PBE outcome. Finally, Theorem
1 summarizes these results and presents the characterization of PBE outcomes.
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Theorem 1. (τ,λ) is a PBE outcome if and only if there is a partition P governing
τ such that:

1. For each µ ∈ supp(τ), λ(µ) ∈ V (µ) and λ(µ)≥ b(µ).

2. For each P ∈P and µ ∈ supp(τP ), λ(µ) = λP .

3. For each P,P ′ ∈P, µ∈ supp(τP ), and ω ∈P ′, if ω ∈ supp(µ)∗, then λP ′ ≥ λP .

The first condition reflects the requirement of Lemma 4, that the sender’s equi-
librium payoff should be higher than what he can guarantee himself from presenting
evidence. The second condition says that the state space is partitioned into equiva-
lence classes and the information policy splits into conditional information policies
in each partition member. The third condition says that if, in one partition mem-
ber, a state is indistinguishable from the support of a belief in another partition
element, S can mimic this information at the state. That means his payoff in the
first partition member should be higher.

Here I give a sketch of the proof and postpone the details until Appendix B.2.
The necessity of the conditions has been discussed previously in this section, so I
restrict our attention to sufficiency.

These conditions are sufficient because whenever they are satisfied, I can con-
struct a PBE. The key is using maximal weak evidence for supp(µ) to induce each
belief µ ∈ supp(τ). If S sends an off-path message mE , I require that R holds a con-
sistent belief and takes an optimal action that gives S payoff π(E), which imposes
severe punishment for deviation. Since R’s optimization and the consistency of the
belief system are relatively easy to prove, I will focus on constraints on S. Condition
1 guarantees that S’s equilibrium payoff is so high that he would not like to send
any off-path message. Condition 2 implies that S’s payoffs are indifferent between
every state in one partition member. Finally, whenever S is able to mimic some state
outside his partition member, condition 3 implies that it is not profitable for him to
do so. Therefore, in every state, S would neither deviate to off-path messages nor
to equilibrium messages used in other states, so he will conform to the equilibrium
strategy.

6 Full Verifiability

Full verifiability, which means that S has the ability to verify any true event, is the
property of the message structure studied in Milgrom (1981) and Grossman (1981).

19



One situation that fits this assumption arises when every piece of information can
be verified costlessly and there is an institution to enforce anti-fraud laws. The
punishment for lying is so severe that S would not like to break the rule.

Definition 6. A message structure satisfies full verifiability if for each event E ⊆Ω,
M (E) is nonempty.

In their settings, not only an equilibrium with full information exists, but also full
information is the unique equilibrium outcome. This is called the unraveling result.
The reasoning is straightforward. In the highest state, S will definitely disclose the
true state; then in the second highest state, he cannot pretend to be the best state
but can at least differentiate from lower states. Recursively, all states unravel from
highest to lowest.

Nevertheless, under general preferences, even though full verifiability still guar-
antees the existence of a fully revealing equilibrium (Hagenbach, Koessler, and Perez-
Richet, 2014), there could be other partially revealing equilibria. In Section 6.1, I
provide a characterization as a corollary of Theorem 1. In Section 6.2, I reexamine
the uniqueness of fully revealing equilibrium, and find that the conditions for the
unraveling result in Milgrom (1981, 2008) can be relaxed to some extent.

6.1 Characterization

Full verifiability admits the strongest form of verification. Now that S can dis-
close the true state, the lower bound for the sender’s equilibrium payoff at each
ω is gf (ω) = minV (δ(ω)). That is because any other evidence mF , s.t. ω ∈ F ,
cannot preclude the belief δ(ω). So the worst outcome from presenting mF , i.e.,
π(F ), is lower than truth-telling, i.e., π({ω}). Accordingly, the lower bound for
the equilibrium payoff for S conditional on the realization of a belief µ becomes
bf (µ) = maxω∈supp(µ) g

f (ω).

Lemma 5. Under a message structure with full verifiability, for each PBE outcome
(τ,λ) and each µ ∈ supp(τ), λ(µ)≥ bf (µ).

Condition 3 of Theorem 1 holds automatically. Because any event can be verified,
the maximal weak evidence for each E ismE , i.e., E∗=E. So the situation where an
indistinguishable state lies in other partition elements does not happen. Given the
satisfaction of condition 3, the characterization is left with the first two conditions.

Corollary 1. Under a message structure with full verifiability, (τ,λ) is a PBE
outcome if and only if there is a partition P governing τ such that:
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1. For each µ ∈ supp(τ), λ(µ) ∈ V (µ) and λ(µ)≥ bf (µ).

2. For each P ∈P and µ ∈ supp(τP ), λ(µ) = λP .

Another implication of full verifiability is that to reveal the true state is an option
S can return to any time. Hence, in each state ω, the lowest payoffs S can receive
in a fully revealing equilibrium, gf (ω), are the lower bounds for his payoffs in any
partially revealing equilibria. In this sense, S prefers partially revealing equilibria
to fully revealing equilibria.

Corollary 2. In every partially revealing equilibrium, suppose S’s payoff at ω ∈ Ω
is t(ω) ∈R, then I can find a fully revealing equilibrium where S gets paid no higher
than t(ω) at ω, ∀ω.

6.2 Revisiting the “Unraveling” Result

Milgrom (1981, 2008) prove the unraveling result under restrictive conditions. Mil-
grom (1981) assumes specific functional forms of S and R’s payoffs; Milgrom (2008)
relaxes the conditions but still needs a property of “single crossing.” In this subsec-
tion, I further drop the “single crossing” condition and show that monotonicity and
diminishing marginal utility suffice to guarantee full disclosure. In this subsection,
I assume that A⊆ R is a closed interval.

Definition 7. uS is monotone if uS is strictly increasing in a.

Definition 8. uR satisfies diminishing marginal utility if for each ω ∈ Ω, uR(·,ω)
is twice continuously differentiable and uR11 < 0 for each a ∈ A.

Diminishing marginal utility implies that R has a unique optimal response r(µ)
to any belief µ, and the optimal action is pure, i.e., r(µ) ∈ A. Also, S’s value
correspondence can be regarded as a function of belief, V (µ) = uS(r(µ)). These two
observations will greatly simplify our analysis; in this section I will treat r and V as
functions.

Then I introduce the definition of full disclosure.

Definition 9. The equilibrium outcome is of full disclosure if for each ω ∈ Ω and
m ∈ supp(σ(ω)), ρ(m) = r(δ(ω)).

Full disclosure means that R has extracted all useful information with which she
can make the optimal decision. All fully revealing equilibria are of full disclosure,
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Figure 4: Failure of Unraveling

but the converse is not true. It is possible that even if R cannot distinguish be-
tween two states, full disclosure is still achieved. For example, if there are ω,ω′ ∈ Ω
s.t. r(δ(ω)) = r(δ(ω′)), Lemma 6 shows that as long as R knows the true state is
contained in {ω,ω′}, she has a unique optimal choice. In this case, I still call the
equilibrium outcome a full disclosure outcome where any other states than these
two states are fully revealed.

Lemma 6. If for each ω ∈ E ⊆ Ω, r(δ(ω)) = r̄, then for each µ ∈∆(E), r(µ) = r̄.

Below I formalize the main result of this section.

Theorem 2. When the message structure is of full verifiability and preferences
satisfy monotonicity and diminishing marginal utility, every PBE outcome is of full
disclosure.

Let me give an intuition of the proof in the case when the receiver has distinctly
different optimal responses in each state. (This idea applies to the general case.)
By Lemma 5, if for a given µ ∈ ∆(Ω), V (µ) is less than bf (µ), then µ cannot
be a candidate for a belief induced by equilibrium strategy. Using this argument, I
investigate the property of V (µ) and show that it has a “monotonic” functional form,
in the sense that whenever the relative probability of a state associated with a higher
optimal receiver response increases, the value of V increases as well. It implies that
for each non-degenerate belief µ∈∆(Ω)\{δ(ω)}ω∈Ω, I have V (µ)< bf (µ). Therefore,
in equilibrium, the only possibility is that the information policy is supported on
the extremes of the belief space, leading to full disclosure as the unique outcome.

When the game does not satisfy the above two assumptions, the unraveling result
may not hold. Below I provide two examples to illustrate. The first example relaxes
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diminishing marginal utility and preserves monotonicity, and the second example
relaxes monotonicity and preserves diminishing marginal utility. In both examples,
I assume that the message structure is of full verifiability.

Example 1: Convex payoff function
The state space is binary Ω = {ω0,ω1} and the action set is an interval A= [−2,1];

S’s payoff function is uS(a) = a; R’s payoff function is concave in ω0, uR(a,ω0) =
−(1

2−a)2, but convex in ω1, uR(a,ω1) = a2. The value function of S has been shown
in Figure 4(a). Notice that when µ0(ω1) ≤ 2

3 , there is a pooling equilibrium where
in both states S is paid higher than if he reveals the true states.

Example 2: Absolute difference
The state space is discrete real numbers Ω = {1,2,3,4,5} and the action set is an

interval A = [1,5]. S’s payoff function is not monotonic, instead, it is equal to the
absolute difference from 3, uS(a) =−|a−3|. R’s payoff function is strictly concave
uR(a,ω) = −(a−ω)2. With the quadratic loss function, R intends to estimate the
value of ω. Figure 4(b) illustrates S’s payoff as a function of R’s expectation of the
true state, E(ω). There is always a partially revealing equilibrium where each pair
of states symmetric around 3 pool together, giving S a payoff higher than the fully
revealing equilibrium.

7 Linear Disclosure

7.1 Characterization

In this section, I turn to study the case of linear disclosure, in which states are
linearly ordered according to how many messages are available. A superior state
has a message set that contains that of an inferior set.

Definition 10. A message structure of linear disclosure if there is an order ≺ over
Ω such that M(ω)⊆M(ω′) if ω ≺ ω′.

Without loss I relabel the states Ω = {ω1, . . . ,ω|Ω|} to reflect the order of ≺, that
is, ωi ≺ ωi+1 for any i. Note that there could be ties, so there may be more than
one way of ranking. For Corollary 3, it does not matter, but it will affect the results
in Section 7.2, and there I will impose an additional constraint to address the issue
of ties.
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Let Ei = {ω ∈ Ω |ωi ≺ ω} be the event that contains those states superior to
ωi. Because S cannot distinguish a state from more superior states, Ei is the most
precise information S can verify in ωi. In particular, all the events S can verify in
state ωi are {Ej ⊂Ω |ωj ≺ ωi}. Define go(ωi) = π(Ei) and the lower bound function
by bo(µ) = maxωi∈supp(µ) g

o(ωi).

Lemma 7. In a linear disclosure model, for each PBE outcome (τ,λ) and each
µ ∈ supp(τ), λ(µ)≥ bo(µ).

The partition members are linearly ordered in parallel with the disclosure or-
der. Define an ordered partition Po = {P1, . . . ,Pl, . . . ,PL} that is divided by several
thresholds. Let ωnl

denote the largest state within Pl, then each Pl can be written
as {ωnl−1+1, . . . ,ωnl

} (n0 = 0). I always make a partition in a way that the states
in higher segment strictly dominate those in lower segments. That is, for each l,
ωnl+1 � ωnl

but ωnl
6� ωnl+1. Write the conditional information policy in Pl as τl

and the associated equilibrium payoff for S as λl.
As compared to Theorem 1, I can reduce condition 3 to that S’s payoff in superior

states should be higher than inferior states.

Corollary 3. In a linear disclosure game, (τ,λ) is a PBE outcome if and only if
there is an ordered partition Po governing τ such that:

1. For each µ ∈ supp(τ), λ(µ) ∈ V (µ) and λ(µ)≥ bo(µ).

2. For each 1≤ l ≤ L and µ ∈ supp(τl), λ(µ) = λl.

3. For each 1≤ l ≤ l′ ≤ L, λl ≤ λl′.

7.2 An algorithm to generate a PBE

In this section, I provide an algorithm to generate an information policy that satisfies
the conditions of Corollary 3. The basic idea is that in equilibrium, states lie in one
element of the partition only when in higher states of the disclosure order S prefers
to pool with lower states. So I start with finding an ordered partition where the
maximal state of each element has the lowest value. Then I develop a recursive
program to find “cheap talk” equilibria in partition members from lowest to highest
segments.

Below I introduce the algorithm in detail. In this part I take the existence of
a cheap talk equilibrium as given, and all the detailed explanations are postponed
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Algorithm 1 Constructing a PBE in linear disclosure
Input: {P (1)

1 , . . . ,P
(1)
n1 }

Output: Information policy τ̃ , comprising conditional information policies
{τ̃t}n1−y

t=1

n= n1

k = 1
y = 0
while n > 0 do

if v(µ0(·|P (k)
1 ))< c

(k)
1 then

Obtain τ1, which is a conditional information policy on P
(k)
1 such that

λ(µ) ∈ V (µ) and λ(µ) = c
(k)
1 , for each µ ∈ supp(τ̃t).

{P (k+1)
1 , . . . ,P

(k+1)
n−1 }= {P (k)

2 , . . . ,P
(k)
n }

τ̃n1+1−n−y = τ1

else if v(µ0(·|P (k)
1 )) ∈ [c(k)

1 , c
(k)
2 ) then

Obtain τ1, which is a conditional information policy on P (k)
1 that puts all

weight on µ0(·|P (k)
1 ).

{P (k+1)
1 , . . . ,P

(k+1)
n−1 }= {P (k)

2 , . . . ,P
(k)
n }

τ̃n1+1−n−y = τ1

else if v(µ0(·|P (k)
1 ))≥ c(k)

2 then
{P (k+1)

1 , . . . ,P
(k+1)
n−1 }= {P k1 ∪P

(k)
2 , . . . ,P

(k)
n }

y = y+ 1
end if
n= n−1
k = k+ 1

end while
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until Appendix D.3.

Step 0
Let v be any selector of V . That is, v is a single-valued function on ∆(Ω)

and v(µ) ∈ V (µ), for any µ ∈ ∆(Ω). If there are ties in the disclosure order, i.e.,
M(ωi) = M(ωj), then compare v(δ(ωi)) and v(δ(ωj)): if v(δ(ωi)) > v(δ(ωj)), put
ωi before ωj , so that i < j; if v(δ(ωi)) = v(δ(ωj)), the ranking is arbitrary. Let
ci = minj≥i v(δ(ωj)) represent the lowest payoff S can get in a state ωj � ωi. By
definition, ci is increasing in i. Selecting states that share the same value of ci into
one part, I obtain an ordered partition P(1) = {P (1)

1 , . . . ,P
(1)
n1 }. Denote by ω(1)

i the
maximal state in each P

(1)
i and by c

(1)
i = v(δ(ω(1)

i )) the corresponding minimum
value of each partition element.

Step (k), k = 1, . . . ,n1

Suppose τ̃1, . . . , τ̃t−1 have been defined, now I search for a conditional information
policy on P (k)

1 .
Case k-1 : If v(µ0(·|P (k)

1 ))< c(k)
1 , from Theorem 1 of Lipnowski and Ravid (2020),

I can find a conditional information policy τ̃t on P
(k)
1 such that λ(µ) ∈ V (µ) and

λ(µ) = c
(k)
1 , for each µ ∈ supp(τ̃t).

Case k-2 : If v(µ0(·|P (k)
1 )) ∈ [c(k)

1 , c
(k)
2 ), let τ̃1 put all weight on µ0(·|P (k)

1 ).
In either case k-1 or case k-2, define an ordered partition P(k+1) = {P (k+1)

1 , . . . ,P
(k+1)
nk+1 },

where nk+1 = nk−1 and P (k+1)
j = P

(k)
j+1, for any j. P(k+1) is the same as P(k) ex-

cept for excluding the first element P (k)
1 . In addition, denote by ω(k+1)

i the maximum
state in each P (k+1)

i and by c(k+1)
i = v(δ(ω(k+1)

i )) the corresponding minimum value
of each partition element.

Case k-3 : If v(µ0(·|P (k)
1 ))≥ c(k)

2 , the new ordered partition is defined as P(k+1) =
{P (k+1)

1 , . . . ,P
(k+1)
nk+1 }, where nk+1 =nk−1, P (k+1)

1 =P
(k)
1 ∪P

(k)
2 , and P (k+1)

j =P
(k+1)
j+1 ,

for any j > 1. Also, ω(k+1)
i and c(k+1)

i are defined as above accordingly.

This process ends after n1 steps with a series of conditional information poli-
cies {τ̃t}Tt=1, T ≤ n1, being generated. By construction, the ex ante distribution
over {τ̃t}Tt=1, τ̃ , is an information policy satisfying the conditions of Corollary 3.
Therefore, it means that τ̃ is a PBE outcome of the linear disclosure game.

Proposition 1. An information policy τ̃ and the payoff distribution λ generated
through the above algorithm is a PBE outcome of the linear disclosure game.
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Figure 5: Illustration of how the algorithm generates a PBE
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7.3 An application of the algorithm

I will use a general example to show how to use the algorithm to generate a PBE
outcome. Suppose the unknown state is a real number from {ω1,ω2, . . . ,ω6} ⊆ R.
R’s decision only depends on the expectation of random variable and she always has
a unique optimal action. Therefore, S’s value correspondence V is single valued, as
illustrated in Figure 5.

Based on S’s value in each state, {V (ωi)}6i=1, first I partition the state space
into three segments, P(1) = {{ω1,ω2},{ω3,ω4},{ω5,ω6}}, with c

(1)
i = V (ω2i), for

i = 1,2,3. Consider that S pools P (1)
1 , then his value V (E[ω1,ω2]) < c

(1)
1 . This is

case 1 (Section 7.2), so I can find a conditional information policy τ̃1 on P
(1)
1 with

constant associated payoffs equal to c(1)
1 . The conditional information policy and

associated payoff are illustrated by the red points in Figure 5(a).
Second, I delete P (1)

1 from P(1) and obtain a new partition P(2) = {{ω3,ω4},{ω5,ω6}}
with c(2)

i = V (ω2(i+1)), i = 1,2. Since V (E[ω3,ω4]) > c
(2)
2 , this situation lies in case

3. So I move on to the next step directly.
Third, I obtain P(3) by merging P (2)

1 and P (2)
2 , so that P(3) = {ω3,ω4,ω5,ω6}

and c(3)
1 = V (ω6). Because V (E[ω3, . . . ,ω6])< c

(3)
1 , it comes back to case 1 again. So

I can find a conditional information policy τ̃2 on P(3) with associated payoffs equal
to c(3)

1 . Finally, the equilibrium outcome and partitional form are illustrated by the
red points in Figure 5(c).

8 Example: Political Campaign

In this section, I consider a political campaign where an incumbent seeks re-election.
There has been a literature on political economy that discusses incumbency ad-
vantage, i.e., the high re-election rate for an incumbent. In particular, Ashworth,
De Mesquita, and Friedenberg (2019) argue that this phenomenon may have an
informational drive. Because the public usually have more information about the
incumbent than challengers, it is easier for the public to receive positive signals
about the incumbent’s characteristics, if he is believed to be competitive. Then,
incumbency advantage only reflects high expectations on the incumbent in the first
place. In the following example, I also discuss how information plays a role in
the election, yet the information comes from the incumbent’s strategic disclosure,
instead of being generated exogenously.

Consider a political campaign in which an incumbent is running for re-election.
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There are a continuum of voters [0,1] who care about the incumbent’s level of of
competence and policy preference. Both competence level and policy preference are
private information for the incumbent. The incumbent’s level of competence, viz.
θ, may be high, θ̄, or low, θ. The incumbent may favor policy p ∈ {a,b}. Thus, the
state space is Ω = {θ̄, θ}×{a,b}. There is a common prior µ0 on Ω.

Voters are divided into two groups: A and B. Group A (resp. B) supports
policy a (resp. b). Let [0, s) be the set of voters in group A and [s,1] be the set of
voters in group B, where 0 < s < 1

2 .
15 Also, suppose there is an outside option for

voters, e.g., a challenger who competes with the incumbent in this election. If the
challenger is elected, voters receive reservation payoff 0.

The incumbent produces a social outcome as a function of competence and his
policy preference. A voter (from group i) cares about social outcome, and her
preference over social outcome is described by a function fi(θ,p). If the incumbent
is incompetent, the social outcome is bad for the voter, irrespective of the social
preference of the incumbent. So that fi(θ,p) = −1, for each p ∈ {a,b}. If the
incumbent is competent, he produces a social outcome that he prefers, so that

fi(θ̄,a) =


w, if i ∈ A,

−1, if i ∈B.
fi(θ̄, b) =


−1, if i ∈ A,

1, if i ∈B.

where w is the relative willingness of group A to support policy a, as compared to
the willingness of group B to support policy b.

Suppose voters have heterogeneous preferences for incumbency, the payoff to a
voter from group i is uRi = fi+ εi, where εi ∼ U [−ti, ti] captures the heterogeneity.16

To make sure that in θ̄a (resp. θ̄b), the entire group A (resp. B) will vote for the
incumbent, I impose a constraint on the variance of εi, i=A,B: ti <min{w,1}. So
the random error will not affect the ordinal preferences of the voters.

Each voter chooses whether to vote for the incumbent, and her choice depends
on her belief about the state. Let µ be a probability distribution over the state
space. A voter (from group i) votes for the incumbent if and only if URi (µ)≥ 0, that
is, E[fi(θ,p) |µ] + εi ≥ 0. Therefore, the expectation of the incumbent’s vote share,
i.e., the incumbent’s value function, is V (µ) = s ·Pr(εA ≥−E[fA(θ,p) |µ])+(1−s) ·
Pr(εB ≥−E[fB(θ,p) |µ]).

15The case of s > 1
2 is symmetric and the similar results hold. The case of s = 1

2 is not inter-
esting because then the incumbent is indifferent between getting support from A and B, and his
information about his policy preference is unimportant.

16To avoid complex calculations, I assume uniform distribution of εi. But allowing more general
distributions will not lose the main insights.
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The incumbent’s goal is to maximize his vote share. To this end, he can reveal
relevant information to influence the voters’ belief about him. Suppose during the
course of his governance, the incumbent has implemented many policies other than
policies a and b. If he is competent, his policies should have produced positive social
outcomes, which he can reveal to the public to verify his competence. That is,
there is message mθ̄ that verifies {θ̄a, θ̄b}. Also, assume that he can credibly reveal
his policy preference for policy b by sending message mb. But he cannot verify
his preference for policy a.17 The combination of mθ̄ and mb verifies {θ̄b}, which is
described by message mθ̄b. If the incumbent keeps silent or prevaricates, his message
is mΩ. Therefore, there are four types of messages: mθ̄, mb, mθ̄b, and mΩ.18

A trivial equilibrium is where the incumbent sends mθ̄b in θ̄b, sends mθ̄ in θ̄a,
and sends mΩ in θa and θb. This equilibrium has an outcome of full disclosure, since
each voter has a clear mind of whether the incumbent is the person she wants to
vote for. From the incumbent’s perspective, when he is incompetent, he will lose;
when he is competent, he will receive support from the group which share the same
policy preference with him, while drive away voters from the opposite group.

However, the fully revealing outcome may not be the best the incumbent could
achieve. He may play another strategy that he is crystal clear about whether he
is competent or not, but vague about his preferred policy. In what follows I will
focus on this type of partially revealing equilibrium with one dimensional disclosure,
denoted by PRE− 1. I will discuss in what situations there exists a PRE-1 such
that a competent incumbent (θ = θ̄) gets strictly better off than in the fully reveal-
ing equilibrium. Before stating the result, I set µi = µ0(θ = θ), µa = µ0(θ̄a), and
µb = µ0(θ̄b) and use π = µb

µa+µb
to denote the relative probability that the incumbent

supports policy b.

Case 1: εA = εB ∼ U [−t, t]

When two groups have homogeneous random error and π lies in a certain area, it
is strictly better for a competent incumbent to withhold information. In his favorite
PRE-1, the incumbent simply pools θ̄a and θ̄b.

Proposition 2. 1. When w > 1 and π ∈ [1+t
2 , t+w1+w ), there exists a PRE-1 in

which the incumbent receives more votes than (1− s) in both θ̄a and θ̄b.
17Even if he can verify p= a, the main results do not change.
18The results in this section hold under the message structure of full verifiability, as well.
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2. When w ≤ 1, the incumbent cannot receive more votes than (1− s) in θ̄b and
more than 0 in θ = θ. When π < 1+t

2 , the fully revealing equilibrium is the
unique equilibrium.

Proposition 2 demonstrates that a PRE-1 strictly benefits a competent incum-
bent when the smaller group (A) have stronger willingness to support their policy
than the larger group (B). The disparity in two groups’ willingness creates differ-
ent responsiveness to information, which the incumbent can leverage to increase his
overall support. When the incumbent is thought to be leaning towards B, yet vot-
ers are not completely sure, he will not lose votes from his core supporters by being
vague, while in the meantime he can lure voters from the other side.

Case 2: µ0 = (µi,µa,µb) = (1
6 ,

1
6 ,

2
3), s= 4

9 , w = 3
2 , εA ∼ U [−1

2 ,
1
2 ], εB ∼ U [−1,1]

When the variance of εi varies across groups, to achieve the incumbent’s preferred
equilibrium may require that he plays mixed strategies. Here group B is more
heterogeneous than group A, so the change in group A’s support for the incumbent
is faster. The total vote share as a function of beliefs is illustrated in Figure 6(a).

Figure 6(b) represents the incumbent’s preferred PRE-1 outcomes. There is a
continuum of equilibria that share a common feature that the information policies
are supported on (0,0,0), (0, 1

5 ,
4
5), (0, 3

5 ,
2
5), and (0,0,1). One typical equilibrium

is that the incumbent sends mθ̄ in θ̄a, and randomize between mθ̄b and mθ̄ with
probabilities 15

16 and 1
16 in θ̄b. Then after mθ̄ the voters’ belief is updated to (0, 3

5 ,
2
5),

so the incumbent will get support from half of group A and more than half of group
B; after mθ̄b he will have the full support of group B.

In those equilibria, a competent incumbent, no matter whether he supports
policy a or policy b, his vote share is equal to 5

9 . As compared to his performance in
the fully revealing equilibrium, where he would get 4

9 in θ̄a and 5
9 in θ̄b, his payoff is

strictly improved when he supports policy a. Different from Case 1, the incumbent
benefits from luring voters from group B in Case 2.

9 Conclusion

Evidence speaks for itself, but it can also be used as tools for persuasion. When
a sender makes strategic moves, his message is a mix of presentation of evidence
and randomization over messages. Hence, in persuasive disclosure, information is
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Figure 6: Heterogeneous Errors

segmented into mutually exclusive categories; and in each category, the sender per-
suades the receiver as if he was playing a cheap talk game. Therefore, the main
result of this paper reveals an intriguing relation between a disclosure model and
cheap talk: information disclosure is essentially partitional cheap talk.
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Appendix

A Section 4

A.1 Proof of Lemma 1

“⊇” For each m ∈⋃
E∈F (ω) M (E), there is F ⊆Ω, s.t. ω ∈ F and m ∈M (F ). By

the definition of M (F ), m ∈M(ω).

“⊆” For each m ∈M(ω), let F = {ω′ ∈ Ω : m ∈M(ω′)}. F is nonempty since
ω ∈ F . m verifies F 3 ω. So that m ∈M (F )⊆ ⋃

E∈F (ω) M (E).

A.2 Proof of Lemma 2

Because M ∗(E) is nonempty, W (E) is nonempty, as well. Without loss of generality,
write W (E) = {K1, . . . ,Kn}. By the definition of W , I know that for each i, Ki ⊇E,
and there exists mKi

∈M ∗(E) that verifies Ki. So that for each i, M (Ki) is
nonempty. By strong normality, M (K1 ∩K2) is nonempty, M (K1 ∩K2 ∩K3) is
nonempty, . . . , M (⋂

K∈W (E)K) is nonempty.

B Section 5

B.1 Proof of Lemma 4

Prove by contradiction. If in a PBE E = (σ,ρ,φ), m is an equilibrium message that
induces φ(m) =µ and US(ρ(m)) = λ(µ), but US(ρ(m))<b(φ(m)). That means there
is ω ∈ supp(φ(m)) such that σ(ω)(m) > 0 and US(ρ(m)) < g(ω). By the definition
of g(ω), it means that there is E ∈F (ω) such that US(ρ(m))< π(E). However, by
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the definition of π(E), US(ρ(mE)) ≥ π(E) > US(ρ(m)). So the sender will deviate
to mE from m in ω.

B.2 Proof of Theorem 1

(Necessity)
Suppose E = (σ,ρ,φ) is a PBE and τ is the information policy associated with

σ. Below I prove the satisfaction of the three conditions one by one.
1. From the optimization of R’s response, I know that (µ,λ(µ)) ∈ graph(V ).

Also by Lemma 4, λ(µ) ≥ b(µ) for each µ ∈ supp(τ), so that the first condition is
satisfied.

2. For each ω,ω′ ∈ Ω, if there exists one message m such that m ∈ supp(σ(ω))∩
supp(σ(ω′)), for each m′ ∈ supp(σ(ω)) and each m′′ ∈ supp(σ(ω′)), US(ρ(m)) =
US(ρ(m′)) = US(ρ(m′′)). Because S’s payoff is state-independent and S must ran-
domizes between messages that bring him equal payoffs. This equivalence relation
between states constructs equivalence classes that form a partition P of Ω.

Because any states that commonly use at least one message are in one partition
element of P , any message can only be used by states belonging to one partition ele-
ment. That means the support of the posterior belief updated from any equilibrium
message must lie in one equivalence class. Hence, P governs τ , i.e., τ splits into a
collection of conditional information policies in each partition element, {τP}P∈P .

For each P ∈P and each µ,µ′ ∈ supp(τP ), µ and µ′ are derived from messages
sent by states in one equivalence class, so that λ(µ) = λ(µ′) = λP .

3. For each P,P ′ ∈P, µ∈ supp(τP ), and ω ∈P ′∩supp(µ)∗, there existsmE such
that φ(mE) = µ and for each ω ∈ supp(µ), mE ∈M(ω) and σ(ω)(mE) > 0. There-
fore, supp(µ)⊆ E. Be Lemma 2, there is supp(µ)∗ ⊆ E, so that ω ∈ supp(µ)∗ ⊆ E.
That means mE ∈M(ω). Since in ω′ ∈ P ′, S can mimic information in P , S’s payoff
in ω, λP ′ , should be no lower than US(ρ(mE)) = λP . Otherwise, S will deviate to
sending mE in ω.

(Sufficiency)
Construct an equilibrium E = (σ,ρ,φ) such that:

(i) σ generates τ under the constraint that the equilibrium messages S uses to
induce each µ ∈ supp(τ) are from the set M (supp(µ)∗).

(ii) For each on-path message m with φ(m) = µ, let R choose an action ρ(m) ∈
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r(µ) such that US(ρ(m)) = λ(µ). For any off-path message m, let R choose
ρ(m) ∈ argmina∈r(φ(m)) U

S(a).

(iii) Bayes’ rule applies to any message sent with positive probability. While for
any unsent message mE , assign a belief φ(mE) so that minV (φ(mE)) = π(E).

This construction is feasible for three reasons. First, for each µ ∈ supp(τ), there
are at least cheap talk messages that can be used to induce it. Second, by Lemma
2, M (supp(µ)∗) 6= ∅. Third, because λ(µ) ∈ V (µ), R has corresponding strategies
to achieve the outcomes.

By construction, it is straightforward that R optimizes and the belief system is
consistent, so I focus on showing that S has no incentive to deviate in any state.

For each P ∈P and ω ∈P , the set of messages S can deviate to, i.e.,M(ω)\supp(σ(ω)),
can be divided into three parts. The first part contains the equilibrium messages
used in other states in P , the second part the equilibrium messages used in P ′ ∈P

(P ′ 6= P ), and the third part the out-of-equilibrium messages in M(ω).
First, by condition 2, S’s payoffs in any state within P are the same, so he would

not like to deviate to other equilibrium messages used in Pl. Second, if in ω ∈ P ,
S can send a message mE which is being used in ω′ ∈ P ′(P ′ 6= P ), by condition (i),
I have ω ∈ supp(φ(mE))∗, then by condition 3, λP ≥ λP ′ . So he will not deviate
to equilibrium messages used in P ′. Finally, if S deviates to an out-of-equilibrium
message mF (ω ∈ F ), by conditions (ii) and (iii), his payoff is π(F )≤ g(ω)≤ λP . So
S will not deviate to out-of-equilibrium messages.

Therefore, S would like to conform to the equilibrium strategy.

C Section 6

C.1 Proof of Lemma 5

Prove by contradiction. If in a PBE E = (σ,ρ,φ), m is an equilibrium message
that induces φ(m) = µ and US(ρ(m)) = λ(µ), but US(ρ(m)) < bf (φ(m)). That
means there is ω ∈ supp(φ(m)) such that σ(ω)(m) > 0 and US(ρ(m)) < gf (ω) =
minV (δ(ω))≤ US(ρ(m{ω})). So S will deviate to m{ω} from m in ω.

C.2 Proof of Corollary 1

It suffices to show that the conditions are equivalent to those in Theorem 1. Condi-
tion 1 is implied by Lemma 5. Condition 2 coincides in both places. The remaining
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task is to show that the situation in condition 3 does not occur in the case of full ver-
ifiability. When the message structure is of full verifiability, for each E, M (E) 6= ∅,
and mE is maximal weak evidence for E. In other words, E∗ = E. Then, for each
µ ∈ supp(τ) s.t. supp(µ)⊆ P ∈P, supp(µ)∗ ⊆ P . So there is no ω ∈ supp(µ)∗, such
that ω ∈ P ′ 6= P .

C.3 Proof of Lemma 6

Since µ= ∑
ω∈E µ(ω)δ(ω), then I have UR(a,µ) = ∑

ω∈E µ(ω)UR(a,δ(ω)). Because r̄
maximizes each UR(·, δ(ω)) = uR(·,ω), for any ω ∈E, r̄ also maximizes their convex
combination UR(·,µ).

C.4 Proof of Theorem 2

One immediate result following diminishing marginal utility is that UR(a,µ) = ∑
ω∈Ω

µ(ω)uR(a,ω) is strictly concave for any µ ∈∆(Ω), which satisfies the assumption of
“single-peakedness” proposed in Hart, Kremer, and Perry (2017). Since the frame-
work in this section lies in the model of Hart, Kremer, and Perry (2017), I can
appeal to their result to have a useful property: the “in-betweenness” property.

Definition 11. The preferences have the in-betweenness property if for any set of
beliefs {µ1, . . . ,µm}⊂∆(Ω), and for any µ̃ in the convex hull of {µ1, . . . ,µm}, denoted
by µ̃ ∈ conv({µ1, . . . ,µm}), I have

min
1≤i≤m

r(µi)≤ r(µ̃)≤ max
1≤i≤m

r(µi) (1)

Because V (µ) = uS(r(µ)), it follows from monotonicity that

min
1≤i≤m

V (µi)≤ V (µ̃)≤ max
1≤i≤m

V (µi) (2)

Lemma 8. Under the assumptions of monotonicity and diminishing marginal util-
ity, the preferences have the in-betweenness property.

Then I will show that the value function V (µ) changes monotonically with the
belief µ.

Lemma 9. For any µ,µ′ ∈∆(Ω) s.t. V (µ) < V (µ′) and λ ∈ (0,1), V (µ) < V ((1−
λ)µ+λµ′)< V (µ′).
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Proof. Let µ′′ = (1− λ)µ+ λµ′, for some λ ∈ [0,1]. r(µ′′) is the solution to the
equation UR1 (a,µ′′) = 0 as below

(1−λ)UR1 (a,µ) +λUR1 (a,µ′) = 0 (3)

Because uS(·,ω) is twice continuously differentiable, UR11 is continuous, so I can
appeal to the Implicit Function Theorem. By the Implicit Function Theorem, the
derivative of the solution of a with respect to λ is

dr(·)
dλ

= UR1 (a∗,µ)−UR1 (a∗,µ′)
(1−λ)UR11(a∗,µ) +λUR11(a∗,µ′)

(4)

where a∗ is the solution of Eq.(3). Because of Lemma 8, a∗ ∈ [r(µ), r(µ′)]. Be-
cause UR is strictly concave in a, UR1 (a∗,µ) is non-positive in [r(µ), r(µ′)], while
UR1 (a∗,µ′) is non-negative in [r(µ), r(µ′)], and they cannot be zero at the meantime.
That means when a∗ ∈ [r(µ), r(µ′)], UR1 (a∗,µ)−UR1 (a∗,µ′) < 0. In addition, the
denominator of the right hand side of Eq.(3) is negative from diminishing marginal
utility, so the derivative dr(·)/dλ is strictly positive for any λ ∈ [0,1]. So that for
λ ∈ (0,1), r(µ)< r((1−λ)µ+λµ′)< r(µ′). Since V (µ) = uS(r(µ)) and uS is strictly
increasing, it is true that V (µ)< V ((1−λ)µ+λµ′)< V (µ′).

Consider R’s optimal actions of each state {r(δ(ω))}ω∈Ω, I call ω ∈ E ⊆ Ω a
maximal state in E if r(δ(ω)) = maxω′∈E r(δ(ω′)). A maximal state is one of S’s
favorite states in E. Note there might be ties, so I denote by Emax the set of all
maximal states in E. This preference for maximal states also extends to probability
distributions. I will show that the belief in ∆(Emax) leads to a higher action than
other beliefs in ∆(E)\∆(Emax).

Lemma 10. For any E ⊆Ω, µ∈∆(Emax), and µ′ ∈∆(E)\∆(Emax), V (µ)>V (µ′).

Proof. If Emax = E, by Lemma 6, ∆(Emax) = ∆(E) and ∆(E)\∆(Emax) = ∅,
so the result is trivially true. Otherwise, when Emax 6= E, there is λ ∈ (0,1],
s.t. µ′ = (1− λ)µ′(·|Emax) + λµ′(·|E\Emax). By Lemma 8, V (µ′(·|E\Emax) ≤
maxω∈E\Emax V (µω). By Lemma 6 and the definition of Emax, V (µ′(·|Emax)) =
maxω∈E\Emax V (µω) > maxω∈E\Emax V (µω)≥ V (µ′(·|E\Emax). Then by Lemma 6
and Lemma 9, V (µ) = V (µ′(·|Emax))> V (µ′).

Next, I will show that the value function falls beneath the lower bound bf (·)
except in beliefs that are supported on their own maximal states.
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Proposition 3. For any µ such that supp(µ) 6= supp(µ)max, V (µ)< bf (µ).

Proof. Let E = supp(µ). When E 6=Emax, for any ω ∈Emax, by Lemma 10, V (µ)<
V (δ(ω)) = maxω′∈E V (δ(ω′)) = bf (µ).

Because of Proposition 3 and Lemma 5, for each PBE (σ,ρ,φ), and each ω ∈ Ω,
m ∈ supp(σ(ω)), it must be true that supp(φ(m)) = supp(φ(m))max, and so ω ∈
supp(φ(m))max. Then, by Lemma 6, r(φ(m)) = r(δ(ω)). So R is taking the optimal
action under the guidance of the S’s information — full disclosure is achieved.

D Section 7

D.1 Proof of Lemma 7

Prove by contradiction. Suppose in a PBE E = (σ,ρ,φ), an equilibrium messagem in-
duces φ(m) = µ and US(ρ(m)) = λ(µ), but US(ρ(m))< bo(φ(m)). That means there
is ωi ∈ supp(φ(m)) such that σ(ωi)(m) > 0 and US(ρ(m)) < go(ωi). Since go(ωi) =
π(Ei), US(ρ(m)) < π(Ei). However, by the definition of π(Ei), US(ρ(mEi

)) ≥
π(Ei)> US(ρ(m)). So the sender will deviate to mEi

from m in ωi.

D.2 Proof of Corollary 3

(Necessity)
Condition 1 is implied by Lemma 7. Condition 2 is proved by Theorem 1.

Condition 3 is proved by contradiction. If in an inferior state S receives more than
a superior state, S should pretend to be the inferior state.

(Sufficiency)
Conditions 1 and 2 are equivalent to their corresponding conditions in Theorem

1. What remains is to show that condition 3 is sufficient for the third condition in
Theorem 1.

Under linear disclosure, for each ω ∈ Pl, {ω}∗ ⊆
⋃
k≥lPk. For each µ ∈ supp(τ)

s.t. supp(µ)⊆ Pl, supp(µ)∗ ⊆ ⋃
k≥lPk. If there is ω ∈ Pk 6= Pl, it means that k > l.

Condition 3 in Corollary 3 implies that λk > λl. So condition 3 in Theorem 1 holds.

D.3 Proof of Proposition 1

The proof is divided into two steps. First, I will show that the series of conditional
information policies {τ̃t}Tt=1 exist. Second, I will show that the outcome satisfies the
conditions in Corollary 3.
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Let me introduce a theorem in Lipnowski and Ravid (2020) that characterizes
“cheap talk” equilibrium, which I will use to find the equilibrium outcome in each
partition element.

Definition 12. Any value v∗ ∈ R is securable if there exists τ ∈ I, such that for
each µ ∈ supp(τ), maxV (µ)≥ v∗.

Proposition 4. (LR, 2019) For any value v∗ ∈R s.t. v∗≥minV (µ0), v∗ is securable
if and only if there is a pair (τ,λ) such that for any µ ∈ supp(τ), λ(µ) ∈ V (µ) and
λ(µ) = v∗.

In each step k, if it is in case k−2 or case k−3, there is no existence problem.
So I only need to discuss case k− 1, where v(µ0(·|P (k−1)

1 )) < c
(k−1)
2 = c

(k)
1 . The

discussion further breaks down to two situations depending on what happens in the
last step (k−1).

Suppose in step (k− 1), it is case (k− 1)− 1 or case (k− 1)− 2. In these
cases P (k−1)

1 is separated from higher states and P
(k)
1 coincides with an initial

partition element P (1)
i , for some i; also c

(k)
1 = c

(1)
i . Then I show that c(k)

1 is se-
curable in P

(k)
1 . Let τc be a conditional information policy in P

(k)
1 such that

supp(τ) = {δ(ω)|ω ∈ P (k)
1 } and τ(δ(ω)) = µ0(ω|P (k)

1 ), for ω ∈ P (k)
1 . By the defi-

nition of P (1)
i , maxV (δ(ω)) ≥ c(1)

i ≥ c
(k)
1 , for each ω ∈ P (k)

1 . So c(k)
1 is securable in

P
(k)
1 , and by Proposition 4, there exists τ̃t as described in the algorithm.
Suppose in step (k−1), it is case (k−1)−3. In this case P (k)

1 = P
(k−1)
1 ∪P (k−1)

2 .
Again I can prove that c(k)

1 is securable. Let τc be a conditional information policy in
P

(k)
1 such that supp(τc) = {µ0(·|P (k−1)

1 )}⋃{δ(ω)|ω ∈ P (k−1)
2 }, and τ(µ0(·|P (k−1)

1 )) =
µ0(P (k−1)

1 |P (k)
1 ) and τ(δ(ω)) = µ0(ω|P (k)

1 ), for ω ∈ P (k−1)
2 . Because it is case (k−

1)− 3, by definition v(µ0(·|P (k−1)
1 )) ≥ c(k−1)

2 = c
(k)
1 ; and because P (k−1)

2 is equal to
some initial partition element P (1)

i , maxV (δ(ω)) ≥ c(1)
i ≥ c

(k)
1 , for each ω ∈ P (k−1)

2 .
So c(k)

1 is securable in P (k)
1 , and there exists τ̃t as described in the algorithm.

So far I have shown that the algorithm will generate a series of conditional
information policies {τ̃t}Tt=1, in the rest of the proof I will show that they satisfy the
conditions in Corollary 3.

Denote by {Pt}Tt=1 the resulting partition elements associated with {τ̃t}Tt=1, and
by ωt the maximal state in Pt in which ct = v(δ(ωt)). Condition 2 is satisfied because
through the algorithm, S either plays a pooling strategy or plays a strategy inducing
a “cheap talk” equilibrium in the auxiliary game, so the associated payoffs are the
same. Condition 3 is satisfied because based on the way each partition element is
cut off, λt < ct+1 ≤ λt+1, for each t.
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O lb hb 1 µb
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(b) vB

Figure 7: Votes From Each Group (θ = θ̄)

For condition 1, it suffices to show that for each t, and each µ ∈ supp(τ̃t), λ(µ)≥
bo(µ). It is given by

λ(µ)≥ ct = minV (δ(ωt))≥ go(ωt) = max
ω:ω≺ωt

go(ω)≥ max
ω:ω∈Pt

go(ω) = bo(µ)

The equality go(ωt) = maxω:ω≺ωt g
o(ω) derives from that go(·) is increasing along

the disclosure order. The reason is that the message set of a superior state includes
that of an inferior state, so the lower bound should be adjusted upward. Therefore,
all conditions of Corollary 3 are satisfied, and the pair (τ̃ ,λ) is a PBE outcome.

E Section 8

E.1 Proof of Proposition 2

First, I discuss the votes from groups A and B separately. Write down the vote share
from group A as a function of µ, vA(µ) = s ·Pr(εA ≥ −E[fA(θ,p) |µ]). Similarly, I
have the vote share from group B as vB(µ) = (1− s) ·Pr(εB ≥ −E[fB(θ,p) |µ]).
Figure 7 (a)(b) illustrate the shapes of vA and vB when θ = θ̄. Both groups either
completely support or oppose the incumbent when the belief is close to extremes; in
the middle, however, the votes change linearly (because ε has a uniform distribution).
The turning points for vi are li and hi, such that li < hi, for i = A,B. The total
vote share is V = vA+vB.

To obtain the cutoff level la, I am looking for the belief point where the voter
within group A most against the incumbent is indifferent. That is, la is the solution
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to E[fA(θ,p) |µ = (0,1− la, la)]− t = 0, i.e., la = w−t
1+w . Then, the cutoff level ha is

where the voter within group A who likes the incumbent the most is indifferent. I
solve E[fB(θ,p) |µ= (0,1−ha,ha)]− t= 0 for ha. So that ha = t+w

1+w . Similarly, I can
solve for the cutoff levels for vB: lb = 1−t

2 and hb = 1+t
2 .

To find a PBE-1 where the incumbent reveals θ, I can without loss evaluate the
incumbent’s value function when θ = θ̄, so that V can be written as a function of
µb. V depends on the relative willingness of two groups to support their preferred
policies. When w < 1, it can be verified that la < lb and ha < hb, and there are two
cases of V depending on the relationship between lb and ha, as illustrated by Figure
8(a)(b). When w > 1, lb < la and hb < ha, and V is illustrated by Figure 8(c)(d).
No matter in which case, V is linear in different segments.

The first claim can be proved by observations that when w > 1 (1) if la ≤ hb,
then V (ha) = 1− s and V is strictly decreasing in [hb,ha] (i.e., in [1+t

2 , t+w1+w ]). (2) if
la >hb, then V (ha) = 1−s, V is strictly decreasing in [la,ha] and constant in [hb, la].
Therefore, as long as π ∈ [1+t

2 , t+w1+w ), the incumbent’s payoff from pooling θ̄a and θ̄b
is larger than (1− s).

The second claim can be proved by observations that when w < 1 (1) if lb < ha,
then V is equal to s in [0, la], strictly decreasing in [la, lb], strictly increasing in
[ha,hb], and equal to (1− s) in [hb,1]. (2) if lb ≥ ha, then V is equal to s in [0, la],
strictly decreasing in [la,ha], strictly increasing in [lb,hb], and equal to 1−s in [hb,1].
With these properties, it is clear that V < 1− s, in [0,hb), and V = 1− s, in [hb,1].

Because as µi increases, the value of V drops, that means for each µ ∈ ∆(Ω)
such that µi ∈ (0,1), V (µ)< V (0,1−π,π)≤ s= b(µ). By Lemma 4, the belief point
µ does not permit any value reaching the lower bound for equilibrium outcomes.
Hence, in every equilibrium θ is revealed and it is a PRE-1. The incumbent cannot
get more than (1− s) in θ̄b and more than 0 in θ.

The same result holds when w = 1. In this case, la = lb and ha = hb and V is
weakly increasing as shown in Figure 8(e).

Furthermore, for any µ0 = (0,1−π,π) such that π < 1+t
2 , V (µ0) < b(µ0) = s, so

that θ̄a and θ̄b cannot pool together in equilibrium. Also, I cannot find a mean-
preserving spread of µ0(·|θ = θ̄) with indifferent associated payoffs, so the fully re-
vealing equilibrium is the unique equilibrium.
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Figure 8: Total Vote Share (θ = θ̄)
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